1. Note that $2^{-2}+2^{-3}=\frac{1}{4}+\frac{1}{8}=0.375$. In addition, $2^{4}+2^{3}=16+8=24$. Hence the final answer is $(-2)(-3)(4)(3)=72$
2. We have that

$$
\begin{aligned}
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+x^{4} \ldots \\
\left(\frac{1}{1-x}\right)^{\prime}=\frac{1}{(1-x)^{2}} & =1+2 x+3 x^{2}+4 x^{3}+\ldots=g(x) \\
g(x) & =\sum_{k=0}^{\infty}(k+1) x^{k}
\end{aligned}
$$

Differentiating again we have

$$
\begin{aligned}
& g(x)^{\prime}=\sum_{k=0}^{\infty}(k+1) k x^{k-1}=\left(\frac{1}{(1-x)^{2}}\right)^{\prime}=\frac{2}{(1-x)^{3}}=\frac{2 g(x)}{1-x}=2 f(x) \\
& \sum_{k=0}^{\infty}(k+1) k x^{k-1}=2 f(x) \\
& \sum_{k=0}^{\infty} \frac{(k+1) k}{2} x^{k-1}=f(x)
\end{aligned}
$$

Hence the coefficent of x^{2015} will be $\frac{(2017)(2016)}{2}=\binom{2017}{2}$
3. We add the first two equations to get:

$$
\begin{align*}
x^{2}+2 y^{2}+3 z^{2} & =36 \tag{1}\\
+3 x^{2}+2 y^{2}+z^{2} & =84 \tag{2}\\
\hline 4 x^{2}+4 y^{2}+4 z^{2} & =120 \tag{3}\\
x^{2}+y^{2}+z^{2} & =30 \tag{4}
\end{align*}
$$

We can now put the above equation into equation 1 and 2 to get $x^{2}-z^{2}=24$. Now adding two times equation 4 and two times $x y+x z+y z$ we have:

$$
\begin{aligned}
2\left(x^{2}+y^{2}+z^{2}\right)+2(x y+x z+y z) & = \\
(x+z)^{2}+(x+y)^{2}+(y+z)^{2} & =2(30)+2(-7)=46 .
\end{aligned}
$$

From here it is easy to check for integer solutions by plugging in the squares from 1 to 6 and then checking whether the remaining number can be expressed as the sum of two squares. (It might be helpful to know that a number can be expressed as a sum of two squares if and only if its factorization into distinct primes contains no odd powers of primes congruent to 3 modulo 4). We then see that the only solution that works is $6^{2}+3^{2}+1^{1}=36+9+1=46$. Combining this with $x^{2}-z^{2}=24$ we get that the only integer solutions are $(5,-2,1),(-5,2,-1)$
4. From the recurrence relation we have $a_{n}=a_{n+1}-a_{n+2}=a_{n+1}-\left(a_{n+1}+a_{n+3}\right)=-a_{n+3}=$ a_{n+6}. Hence the sequence cycles with period 6 . Writing out the first few terms and noting that $2015 \equiv 5 \bmod 6$, we get that $a_{1}+a_{2}+a_{3}+\ldots+a_{2015}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=$ $-1+2+3+1-2=3$
5. Completing the square we get $x^{2}-4 x+y^{2}+3=(x-2)^{2}+y^{2}=1$. From here we see that $x^{2}+y^{2}$ would be the square of distance from the orgin to a point on the circle $(x-2)^{2}+y^{2}=1$. The maximum and minimum distance would then be 3 and 1 respectively so our answer is $9-1=8$
6. Let the five roots be $a, a r, a r^{2}, a r^{3}, a r^{4}, a r^{5}$. We are then given that:

$$
\begin{align*}
a\left(1+r+r^{2}+r^{3}+r^{4}\right) & =180 \tag{5}\\
-a^{5} r^{10} & =D \tag{6}\\
\frac{1}{a}+\frac{1}{a r}+\frac{1}{a r^{2}}+\frac{1}{a r^{3}}+\frac{1}{a r^{4}} & =20 \tag{7}
\end{align*}
$$

from Vieta's formulas. Now simplifying equation 7 we have:

$$
\begin{aligned}
\frac{1+r+r^{2}+r^{3}+r^{4}}{a r^{4}} & =20 \\
\frac{180}{a^{2} r^{4}} & =20 \\
\left(a r^{2}\right)^{2} & =9 \\
a r^{2} & = \pm 3
\end{aligned}
$$

Hence $D=-\left(a r^{2}\right)^{5}=-(\pm 3)^{5}= \pm 243 \Longrightarrow|D|=243$
7. By the binomial theorem we have $(1+x)^{75}=\sum_{k=0}^{75}\binom{75}{k}$ Plugging in i we see that that our sum $S=\sum_{k=0}^{37}(-1)^{k}\binom{75}{2 k}$ would be the real part of $(1+i)^{75}$. Hence converting to $1+i$ to polar form we have

$$
(1+i)^{75}=(\sqrt{2}, \pi / 4)^{75}=\left(2^{75 / 2}, \frac{75 \pi}{4}\right)=\left(2^{75 / 2}, \frac{3 \pi}{4}\right)
$$

Computing the real part we have $S=\operatorname{Re}\left(2^{75 / 2}, \frac{3 \pi}{4}\right)=2^{75 / 2} \cos \frac{3 \pi}{4}=-2^{37}$
8. Let $x_{k}=\omega^{k}$. Then

$$
P=\prod_{k=0}^{6}\left(1+x_{k}-x_{k}^{2}\right)=-\prod_{k=0}^{6}\left(\phi-x_{k}\right)\left(\tau-x_{k}\right)
$$

where ϕ, τ are the two solutions to $x^{2}-x-1$. Since ω is a primitive root of unity, as we go over all powers we pick up all the roots of unity. Hence we must have that $P=$ $-(\phi-1)(\phi-\omega)\left(\phi-\omega^{2}\right) \ldots\left(\phi-\omega^{6}\right)(\tau-1)(\tau-\omega)\left(\tau-\omega^{2}\right) \ldots\left(\tau-\omega^{6}\right)=-\left(\phi^{7}-1\right)\left(\tau^{7}-1\right)$. Since both ϕ, τ satisfy $x^{2}=x+1$, we have that

$$
\begin{aligned}
x^{7}-1=x * x^{6}-1 & =x(x+1)^{3}-1 \\
& =x\left(x^{3}+3 x^{2}+3 x+1\right)-1 \\
& =x^{2}\left(x^{2}+3 x+3\right)+x-1 \\
& =(x+1)(4 x+4)+x-1 \\
& =4 x^{2}+9 x+3 \\
& =13 x+7
\end{aligned}
$$

Now since $\phi+\tau=1, \phi \tau=-1$, we have that

$$
P=-(13 \phi+7)(13 \tau+7)=-(-169+91+49)=29
$$

9. ${ }^{1}$ We wish to find

$$
L=\lim _{n \rightarrow \infty} \frac{1}{n^{2}}\left(\sqrt{n^{2}-1}+\sqrt{n^{2}-2^{2}}+\ldots+\sqrt{n^{2}-(n-1)^{2}}\right)
$$

Bringing a factor of $1 / n$ into the square roots we have

$$
\begin{aligned}
L & =\lim _{n \rightarrow \infty} \frac{1}{n}\left(\sqrt{1-\frac{1}{n^{2}}}+\sqrt{1-\frac{2^{2}}{n^{2}}}+\ldots+\sqrt{1-\frac{(n-1)^{2}}{n^{2}}}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \sqrt{1-\left(\frac{k}{n}\right)^{2}}
\end{aligned}
$$

Notice this is a Riemann sum with $\Delta=\frac{1}{n}$ and $x_{k}^{*}=\frac{k}{n}$. In the limit as n goes to infinity this converges to the integral $\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{~d} x$. This is just one quarter of the area of the unit circle so the final answer is $\frac{\pi}{4}$
10. We have that $I=\int_{0}^{\pi / 2} \ln (4 \sin x) \mathrm{d} x=\int_{0}^{\pi / 2} \ln (4 \cos x) \mathrm{d} x$ since $\sin x$ and $\cos x$ take on the same values on the interval $[0, \pi / 2]$. Adding these we have

$$
\begin{aligned}
2 I & =\int_{0}^{\pi / 2} \ln (4 \sin x) \mathrm{d} x+\int_{0}^{\pi / 2} \ln (4 \cos x) \mathrm{d} x \\
& =\int_{0}^{\pi / 2} \ln (16 \sin x \cos x) \mathrm{d} x \\
& =\int_{0}^{\pi / 2} \ln (16 \sin x \cos x) \mathrm{d} x \\
& =\int_{0}^{\pi / 2} \ln (2)+\ln (8 \sin x \cos x) \mathrm{d} x \\
& =\frac{\pi \ln 2}{2}+\int_{0}^{\pi / 2} \ln (4 \sin 2 x) \mathrm{d} x
\end{aligned}
$$

Making the subsitution $u=2 x$ and noting that $\sin x$ assumes the same values from $[\pi / 2, \pi]$ as $[0, \pi / 2]$, we have:

$$
\begin{aligned}
2 I & =\frac{\pi \ln 2}{2}+\frac{1}{2} \int_{0}^{\pi} \ln (4 \sin u) \mathrm{d} u \\
& =\frac{\pi \ln 2}{2}+\frac{1}{2}\left(\int_{0}^{\pi / 2} \ln (4 \sin u) \mathrm{d} u+\int_{\pi / 2}^{\pi} \ln (4 \sin u) \mathrm{d} u\right) \\
& =\frac{\pi \ln 2}{2}+\frac{2 I}{2}
\end{aligned}
$$

Hence we have $I=\frac{\pi \ln 2}{2}$

[^0]
[^0]: ${ }^{1}$ There was a typo in the actual test, $1 / n^{3}$ should have been $1 / n^{2}$

