1. $\frac{\pi \sqrt{3}}{6}$
2. $\frac{3 \sqrt{3}}{2}$
3. $\sqrt{2}$
4. $7+6 \sqrt{2}+4 \sqrt{3}$
5. $\frac{5}{12}$
6. 1
7. $\frac{3(1+\sqrt{5})}{2}$
8. $\frac{9}{2} \pi$
9. $36 \sqrt{3}$
10. $\frac{825}{128}$
[P1.] Let $A B C$ be a triangle. Let r denote the inradius of $\triangle A B C$. Let r_{a} denote the A-exradius of $\triangle A B C$. Note that the A-excircle of $\triangle A B C$ is the circle that is tangent to segment $B C$, the extension of ray $A B$ beyond B and the extension of $A C$ beyond C. The A-exradius is the radius of the A-excircle. Define r_{b} and r_{c} analogously. Prove that

$$
\frac{1}{r}=\frac{1}{r_{a}}+\frac{1}{r_{b}}+\frac{1}{r_{c}} .
$$

SOLUTION: Lets use the notation $[X Y Z]$ is the area of triangle $X Y Z, s$ is the semiperimeter, $a=B C, b=C A$, and $c=A B$. Note the formulas: $A=r s=r_{a}(s-a)$. Let us prove that $A=r_{a}(s-a)$. Let I_{A} denote the center of the A excircle. Notice that $[A B C]=\left[I_{A} C A\right]+\left[I_{A} B A\right]-$ $\left[I_{A} B C\right]=\frac{1}{2}\left(r_{a} \cdot b+r_{a} \cdot c-r_{a} \cdot a\right)=r_{a}(s-a)$. Using these formula, we get that the result is equivalent to $s=(s-a)+(s-b)+(s-c)$, which is true.

- 4 points for proving that $\frac{r_{a}}{r}=\frac{s}{s-a}$ (or equivalent). There are at least two possible approaches:

1. Proving the formulas $A=r s, A=r_{a}(s-a)$. -2 points if $A=r_{a}(s-a)$ is stated without proof.
2. Say the incircle is tangent to $A B$ at X and the A-excircle is tangent to line $A B$ at X^{\prime}. Then $A X / A X^{\prime}=r / r_{a} .2$ points for calculating $A X$ correctly using equal tangents. 2 points for calculating $A X^{\prime}$ correctly using equal tangents.

- 2 points for complete solution.
[P2.] Let $A B C$ be a fixed scalene triangle. Suppose that X, Y are variable points on segments $A B, A C$, respectively such that $B X=C Y$. Prove that the circumcircle of $\triangle A X Y$ passes through a fixed point other than A.
SOLUTION: Without loss of generality, suppose that $A B<A C$. Let the perpendicular bisector of segment $B C$ intersect arc $B A C$ at P. As $A B<A C, X$ lies on minor arc $A C$. Choose some value of $B X=C Y$. Observe that $P B=P C$ and $B X=C Y$. Further, $\angle P B X=\angle P B A=$ $\angle P C A=\angle P C Y$. Thus $\triangle X B P=\triangle Y C P$ by SAS similarity. It follows that $\angle X P B=\angle Y P C$. Now we prove that $A P Y X$ is cyclic. Indeed, $\angle X A Y=\angle B A C=\angle B P C=\angle B P Y+\angle Y P C=$ $\angle P B Y+\angle X P B=\angle X P Y$. Thus $A P Y X$ is cyclic. Evidently, P is a fixed point, and the circumcircle of $\triangle A X Y$ passes through P, so we are done.
- 2 points for correctly recognizing that the other fixed point lies on the circumcircle of $\triangle A B C$ and the perpendicular bisector of segment $B C$.
- 1 point for proving that $\triangle X B P=\triangle Y C P$.
- 1 point for proving that P lies on the circumcircle of $\triangle A X Y$.
- 2 points for a fully correct solution, which contains the following elements: clearly explaining why P is a fixed point, being clear about any possible configuration issues (eg. stating WLOG $A B<A C$, using directed angles)

Comments: Other solutions may be possible. Indeed, one can try to define P as the intersection of two circles and show that P lies on the perpendicular bisector of segment $B C$. -1 point if one has a fully correct solution along these lines except the solver does not explain why P lies on arc $B A C$ as opposed to the other arc with endpoints at B, C. Perhaps other solutions are possible along the lines of showing that the line connecting center of $C(A X Y)$ and the circumcenter of $C(A B C)$ is a fixed line.

