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P1. Let a simple polygon be defined as a polygon in which no consecutive sides are parallel and no
two non-consecutive sides share a common point. Given that all vertices of a simple polygon
P are lattice points (in a Cartesian coordinate system, each vertex has integer coordinates),
and each side of P has integer length, prove that the perimeter must be even.
Solution 1: Let (xi, yi) be the coordinates of the ith vertex of the polygon. Notice that
x ≡ x2 mod 2, so

L =
∑
i

√
(xi − xi+1)2 + (yi − yi+1)2 ≡

∑
i

(xi−xi+1)
2+(yi−yi+1)

2 ≡
∑
i

xi−xi+1+yi−yi+1 = 0 mod 2

• 2 points for recognizing that the parity of x is the same as the partity of x2 (in some
form).

• 2 points for using the fact that
∑

∆xi = 0 so the number of odd ∆xi’s is even. (or

equivalent statement) wher ∆xi = xi+1 − xi

• 2 points for complete solution.

Solution 2: Since the vertices are on integer coordinates, we know that each of the side

lengths is in the form
√
a2 + b2, where a, b are integers. We know that an edge is even if√

a2 + b2 is even, or in other words, both a, b are even. We get that an edge is odd if exactly
one of them is odd. Thus, for a segment (x0, y0) → (x1, y1), a = |x0 − x1|, b = |y0 − y1|, if
both a, b are even, then the length is even. Otherwise, if exactly one of those differenes is
odd, the edge length is odd. Thus, if the parity of x changes from x0 to x1, then a is odd,
and similarly for y.Thus, if we consider the parity of the sum of the coordinates,we can see
that if it changes, then our edge is odd, otherwise it is even. Now, consider the polygon
(x0, y0) → (x1, y1) → . . . → (xk, yk) → (x0, y0). Since the polygon must return to the same
point, the parity must be the same as the initial one, thus, we must make an even number
of parity changes. That means there is an even number of odd edges, or in other words, the
sum of all the edges must be even, so we’re done.

• 1 point for determining that edge length is even if the difference in x-coordinates and
the difference in y coordinates is even.

• 1 point for determining that edge length is odd if exactly one of the above differences is
odd.

• 1 point for showing that after all the parity changes between edges are made, the parity
must return to what it was originally (if they say something like since a path traveling
around all the edges returns to the same point, thus the number of changes of parity is
the same will suffice for this part)

• 2 points for deducing that the number of parity changes must be even

• 1 point for showing that an even number of parity changes (and thus an even number of
odd edges) implies that the perimeter is even.
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P2. Given an integer n ≥ 2, the graph G is defined by:
- Vertices of G are represented by binary strings of length n
- Two vertices a, b are connected by an edge if and only if they differ in exactly 2 places
Let S be a subset of the vertices of G, and let S′ be the set of edges between vertices in S and
vertices not in S. Show that if |S| (the size of S) ≤ 2n−2, then S′ ≥ |S|.
Solution: We induct on n.
Notation: Let V represent the vertices in G throughout this solution.

Base Case: n = 2. S can have either 0 or 1 vertex. If S has 0 vertices then |S| = 0,
trivial. If |S| = 1, since all vertices are connected to another vertex, then |S′| = 1 as well.

Induction Hypothesis: Assume the claim holds for n. Define subsets S0 and S1 which are
disjoint subsets of S such that all vertices in S0 have binary representation beginning in 0,
and all vertices in S1 have binary representation beginning in 1. We proceed to prove that
the claim holds for n + 1.

Case 1: |S0| ≤ 2n−2, and |S1| ≤ 2n−2.
Then by applying the induction hypothesis to both subsets, we see that the number of edges
that cross between vertices in S and vertices not in S in each of the sets V0 (all vertices with
binary representation beginning in 0) and V1 (all vertices with binary representation begin-
ning in 1) summed together is at least |S0|+ |S1| = |S|.

Case 2: WLOG, |S0| > 2(n−2), so then |S1| < 2(n−2) (because their sum can’t be grater
than 2(n−1)):
The induction hypothesis still applies to S1, and we know that |S′1| ≥ |S1|. We can get a
bijection between the elements in V0 and V1 by switching the first and last digits in the binary
representation of an element in either V0 or V1 (ex, 0...1 would become 1...0, and 1...1 would
become 0...0). Therefore, we know that there are at least |S0|− |S1| edges connecting S0 with
V1 − S1, and adding these, we see that the number of edges will be at least |S0|. Now we go
back to the edges which connect vertices in S1 with vertices in V1 but not S1. These edges
represent switching the digit in place i, and the one in place j, with place i, j < n+1 (because
the first digit needs to still be a 1). Now, note that switching the first digit and the ith digit
of a vertex v in V1 but not S1 which is the endpoint of one of these edges gives you a vertex
in V0. If the edge’s other endpoint is in S0, then we can add to our count for S′. However, if
the edge’s other endpoint doesn’t end in S0, this is a problem. However, switching the first
and jth digits of the vertex gives you the same vertex in S1 that was connected to the vertex
in V1 but not S1, which still allows us to add to our count of edges. Thus, we get at least |S1|
more edges, and have |S0|+ |S1| = |S| edges total, which completes our proof!

• 1 point for proving the base case correct.

• 1 point for introducing S0 and S1, and stating correct induction hypothesis.

• 1 point for proving Case 1.

• 1 point for applying induction hypothesis to S1 in Case 2.

• 1 point for proving that the number of edges between S0 and V1 not including S1 is at
least |S0| − |S1|.

• 1 point for completing the count to at least |S|.
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