1. Find all real numbers x such that $4^{x}-2^{x+2}+3=0$.
2. Find the smallest positive value of x such that $x^{3}-9 x^{2}+22 x-16=0$.
3. Emma is seated on a train traveling at a speed of 120 miles per hour. She notices distance markers are placed evenly alongside the track, with a constant distance x between any two consecutive ones, and during a span of 6 minutes, she sees precisely 11 markers pass by her. Determine the difference (in miles) between the largest and smallest possible values of x.
4. The function $f(x)=x^{5}-20 x^{4}+a x^{3}+b x^{2}+c x+24$ has the interesting property that its roots can be arranged to form an arithmetic sequence. Determine $f(8)$.
5. Determine

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x+2014}}{\sqrt{x}+\sqrt{x+2014}}
$$

6. Find $f(2)$ given that f is a real-valued function that satisfies the equation

$$
4 f(x)+\left(\frac{2}{3}\right)\left(x^{2}+2\right) f\left(x-\frac{2}{x}\right)=x^{3}+1 .
$$

7. Let $f(x)=x^{2}+18$ have roots r_{1} and r_{2}, and let $g(x)=x^{2}-8 x+17$ have roots r_{3} and r_{4}. If $h(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ has roots $r_{1}+r_{3}, r_{1}+r_{4}, r_{2}+r_{3}$, and $r_{2}+r_{4}$, then find $h(4)$.
8. Suppose an integer-valued function f satisfies

$$
\sum_{k=0}^{2 n+1} f(k)=\ln |2 n+1|-4 \ln |2 n-1| \text { and } \sum_{k=0}^{2 n} f(k)=4 e^{n}-e^{n-1}
$$

for all non-negative integers n. Determine $\sum_{n=0}^{\infty} \frac{f(n)}{2^{n}}$.
9. Find α such that

$$
\lim _{x \rightarrow 0^{+}} x^{\alpha} I(x)=a \quad \text { given } \quad I(x)=\int_{0}^{\infty} \sqrt{1+t} \cdot e^{-x t} d t
$$

where a is a nonzero real number.
10. Suppose that $x^{3}-x+10^{-6}=0$. Suppose that $x_{1}<x_{2}<x_{3}$ are the solutions for x. Find the integers (a, b, c) closest to $10^{8} x_{1}, 10^{8} x_{2}$, and $10^{8} x_{3}$ respectively.

P1. Suppose that a, b, c, d are non-negative real numbers such that $a^{2}+b^{2}+c^{2}+d^{2}=2$ and $a b+b c+c d+d a=1$. Find the maximum value of $a+b+c+d$ and determine all equality cases.

P2. Define $\eta(f)$ to be the number of roots that are repeated of the complex-valued polynomial f (e.g., $\left.\eta\left((x-1)^{3} \cdot(x+1)^{4}\right)=5\right)$. Prove that for nonconstant, relatively prime $f, g \in \mathbb{C}[x]$,

$$
\eta(f)+\eta(g)+\eta(f+g)<\operatorname{deg} f+\operatorname{deg} g .
$$

