
BMT 2013 23 March 2013TEAM SOLUTIONS

1. A time is called reflexive if its representation on an analog clock would still be permissible
if the hour and minute hand were switched. In a given non-leap day (12:00:00.00 a.m. to
11:59:59.99 p.m.), how many times are reflexive?
Answer: 286
Solution: In any given period modulo 5 minutes, there must be one, save the final 5 minutes

of each 12 hour period. Thus, the answer is
1440

5
− 2 = 286 .

2. Find the sum of all positive integers N such that s =
3

√
2 +
√
N+

3

√
2−
√
N is also a positive

integer.
Answer: 5

Solution: Let x =
3

√
2 +
√
N and y =

3

√
2−
√
N . We have s = x+ y, and s3 = (x+ y)3 =

x3 +y3 +3xy(x+y) = x3 +y3 +3xys. Since x3 = 2+
√
N, y3 = 2−

√
N , we have x3 +y3 = 4.

Additionally, we have xy =
3

√
(2 +

√
N)(2−

√
N) = 3

√
4−N , so s3 = 4 + 3s 3

√
4−N , and

(s3 − 4)/(3s) = 3
√

4−N . Since N is a positive integer, we have the right hand side to be at
most

3
√

4 < 2. Thus, we have (s3 − 4)/(3s) < 2→ s3 − 6s < 4. We can see the only possible
values of s in this case are 1, 2, but if s = 2, then (s3 − 4)/(3s) = 2/3, which is not the cube
root of an integer, so we are only left with s = 1. This gives us N = 5 as the only possible
solution.

3. A round robin tennis tournament is played among 4 friends in which each player plays every
other player only one time, resulting in either a win or a loss for each player. If overall
placement is determined strictly by how many games each player won, how many possible
placements are there at the end of the tournament? For example, Andy and Bob tying for
first and Charlie and Derek tying for third would be one possible case.
Answer: 4
Solution: Note that a player with highest score at the end of the tournament must have won
either 2 or 3 games. In the first case, the permissible final scores are (2, 2, 1, 1) or (2, 2, 2, 0),
corresponding to two 1st place finishes and two 3rd place finishes or three 1st place finishes
and one 4th place finish. In the second case, the permissible final scores are (3, 1, 1, 1) or
(3, 2, 1, 0), and (3, 3, 0, 0) is not permissible, as one of the two first place finishers would have
to have beaten the other at some point. Thus, there are 4 possible results.

4. Find the sum of all real numbers x such that x2 = 5x+ 6
√
x− 3.

Answer: 7
Solution: Factoring, we obtain (x+ 3

√
x+ 3)(x− 3

√
x+ 1) = 0, from which we determine

r1+r2 = 3 and r1r2 = 1 and conclude r21+r22 = 7 , where r1, r2 are the roots of the real-valued
equation r2 − 3r + 1 = 0.

5. Circle C1 has center O and radius OA, and circle C2 has diameter OA. AB is a chord of circle
C1 and BD may be constructed with D on OA such that BD and OA are perpendicular.
Let C be the point where C2 and BD intersect. If AC = 1, find AB.
Answer:

√
2

Solution: Let AO intersect the other side of C1 at E. In right triangle OCA, we have
AC2 = AO ·AD = 1 (by similar triangles). In right triangle ABE, we have AB2 = AE ·AD =

2 ·AO ·AD = 2. Thus, we must have AB =
√

2 .
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6. In a class of 30 students, each students knows exactly six other students. (Of course, knowing
is a mutual relation, so if A knows B, then B knows A). A group of three students is balanced
if either all three students know each other, or no one knows anyone else within that group.
How many balanced groups exist?
Answer: 1990

Solution: We do complementary counting. There are

(
30

3

)
groups to choose from. In

a non-balanced groups, there are exactly two students whose relations with the other two
members of the group are different (i.e. he/she knows one, but not the other). Thus, we can
count the number of ordered triplets (A,B,C) where A knows B but not C, and this will
double count the number of non-balanced groups. We can choose A in 30 ways, and we only
have 6 choices for B and 23 choices for C (independent of each other). Thus, we get the total
number of groups is 30 · 6 · 23/2 = 2070, for which we take the complement to get 1990 .

7. Consider the infinite polynomial G(x) = F1x+F2x
2 +F3x

3 + . . . defined for 0 < x <

√
5− 1

2
,

where Fk is the kth term of the Fibonacci sequence defined to be Fk = Fk−1 + Fk−2 with
F1 = 1, F2 = 1. Determine the value a such that G(a) = 2.

Answer:
1

2
Solution: Let y = xF1 + x2F2 + x3F3 + . . .. Consider xy = x2F1 + x3F2 + x4F3 + . . .. Then
(1−x)y = xF1 +x2(F2−F1) +x3F1 +x4F2 + . . . = x+x2y so x2y+x(y+ 1)−y = 0. Solving

this quadratic gives us x =
−(y + 1) +

√
(y + 1)2 + 4y2

2y
, and plugging in y = 2 yields

1

2
.

8. A parabola has focus F and vertex V , where V F = 10. Let AB be a chord of length 100 that
passes through F . Determine the area of 4V AB.
Answer: 100

√
10

Solution: Let AF = a and BF = b. Let ∠AFV = θ. Then we have

a+ acosθ = 2 ∗ 10 = b− bcosθ

So, we have

100 = a+ b =
20

1 + cosθ
+

20

1− cosθ
=

40

sin2θ

So,

sinθ =

√
2

5

So, we get

Area4V AB = Area4V AF + Area4V FB

=
1

2
(10a sinθ + 10b sin(π − θ))

=
1

2
(10 ∗ 100 sinθ)

= 100
√

10 .
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9. Sequences xn and yn satisfy the simultaneous relationships xk = xk+1 + yk+1 and xk > yk for
all k ≥ 1. Furthermore, either yk = yk+1 or yk = xk+1. If x1 = 3 +

√
2, x3 = 5 −

√
2, and

y1 = y5, evaluate
(y1)

2 + (y2)
2 + (y3)

2 + . . .

Answer: 2
√

2− 1
Solution: Imagine a rectangle of dimensions x × y. Now, continuously estimate the area
of the rectangle by placing the largest possible square inside the rectangle. If x1 = x and
y1 = y, the side lengths of these squares are the same as the sequence bn!! Thus, our answer

is xy, or (3 +
√

2)(
√

2− 1) = 2
√

2− 1 .

10. In a far away kingdom, there exist k2 cities subdivided into k distinct districts, such that in
the ith district, there exist 2i − 1 cities. Each city is connected to every city in its district
but no cities outside of its district. In order to improve transportation, the king wants to
add k− 1 roads such that all cities will become connected, but his advisors tell him there are
many ways to do this. Two plans are different if one road is in one plan that is not in the
other. Find the total number of possible plans in terms of k.

Answer: k2k−4 · (2k)!

2k · k!
Solution: Consider two sequences x1, . . . , xk−2, and a1, . . . , ak, where xi ∈ [1, k2], and
ai ∈ [1, 2i − 1]. We will show a bijection from these two sequences to the number of ways
to connect the cities. To transform a graph into a sequence, consider the smallest indexed
component that is connected to only one other component. Then, set aI to be the endpoint
of that road in component I, and let x1 be the other endpoint. Then, we can keep repeating
this sequence for k−2 roads to create the sequence x. The last road will connect components
u, v, for which we can just set au, av as the endpoints of that edge. Now, we simply need to
count the number of ways to choose such sequences. There are k2 choices for each of the k−2
xi’s, yielding k2k−4 choices for the entire sequence. There are 2i − 1 choices for each of the

k ai’s, yielding 1 · 3 . . . (2k − 1) =
1 · 2 · 3 · 4 . . . (2k − 1) · (2k)

2 · 4 . . . (2k)
=

(2k)!

2k · k!
choices for the entire

sequence. Thus, the total number of possible plans is equal to k2k−4 · (2k)!

2k · k!
.


