
BMT 2013 The Algebra of Noncommutative Operators Power Round

1 Introduction (0 pts)

The Algebra of Noncommutative Operators: In this power round, we will consider the algebra of noncom-
mutative operators. We will define operators as any objects that satisfy the properties below. We will use
bold-faced, upper case letters, such as A, to denote operators and lower case letters to denote complex
numbers. We can add operators, multiply two operators, and multiply operators by numbers. Almost all
of the properties that we take for granted for real numbers hold for operators. The only exception is that
AB 6= BA where A,B are operators. Also you cannot add a number and an operator. In particular, the
following properties hold:

Suppose that a, b, ... are complex numbers and A,B, ... are operators. You may use the following prop-
erties without explicitly stating them:

(a) A + B = B + A

(b) (A + B) + C = A + (B + C).

(c) A(BC) = (AB)C.

(d) A(B + C) = AB + AC, (A + B)C = AC + BC.

(e) (a+ b)C = aC + bC.

(f) a(B + C) = aB + aC

(g) a(bC) = (ab)C.

(h) A(bC) = b(AC) = (bA)C.

(i) There is a zero operator, often written as 0 such that 0 + A = A for all operators A.

(j) 0A = 0A = A0 = 0 (where 0 is the zero operator and 0 is the complex number zero).

(k) Given a operator, A, there exists another operator, denoted by −A such that A + (−A) = 0.

(l) There exists a multiplicative identity for operators called the identity operator, often written as
I. The identity operator is such that IA = AI = A for all operators A.

2 Manipulating Commutators (25 pts)

Commutator : As discussed above, it is not generally true that AB = BA for operators. Therefore, it
can be useful to consider the quantity, AB − BA, which is not generally zero. This quantity is called the
commutator of A and B and is written as follows

[A,B] = AB−BA (1)

P1 (a) (2 pts) Prove that [A,A] = 0 and [A,B] = −[B,A].

(b) (2 pts) Prove the following two properties of commutators

[A,BC] = B[A,C] + [A,B]C [A, bB + cC] = b[A,B] + c[A,C] (2)

where A,B,C are operators and a, b are numbers.

(c) (2 pts) Prove the Jacobi Identity:

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (3)

Solution:

(a) [A,A] = AA−AA = 0 and [A,B] = AB−BA = −(BA−AB) = −[B,A].

(b) B[A,C] + [A,B]C = B(AC−CA) + (AB−BA)C = ABC−BCA = [A,BC] and b[A,B] +
c[A,C] = b(AB−BA) + c(AC−CA) = A(bB + cC)− (bB + cC)A = [A, bB + cC]
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(c) [A, [B,C]] = ABC − ACB − BCA + CBA = (ABC − BCA) + (CBA − ACB). Summing
cyclically gives the result.

P2 (3 pts) Suppose that [A,B] = 0. If n is a positive integer, prove that [An,B] = 0.

Solution: Proceed by induction. The base case, n = 1, is given. Then using the inductive hypothesis,
we get

[An,B] = [An−1,B]A + An−1[A,B] = 0 (4)

For your later reference, it is also true that

[AB,C] = A[B,C] + [A,C]B [aA + bB,C] = a[A,C] + b[B,C] (5)

Angular Momentum Algebra: An ordered triple of three operators, (J1,J2,J3) = ~J, are said to form an
angular momenum algebra if

[J1,J2] = iJ3 [J2,J3] = iJ1 [J3,J1] = iJ2 (6)

Note i =
√
−1 is the imaginary unit.

Later in the power round, it will be useful to write the first condition as [Ji,Jj ] = i
∑3
k=1 εi,j,kJk for

i = 1, 2, 3 and j = 1, 2, 3 where εi,j,k is the the Levi-Civita symbol is defined as follows: ε1,2,3 = ε2,3,1 =
ε3,1,2 = 1 and ε3,2,1 = ε2,1,3 = ε1,3,2 = −1. If any of the i, j, k are equal, then εi,j,k = 0.

P3 (a) (3 pts) Define J+ = J1 + iJ2 and J− = J1 − iJ2. Prove that

[J3,J+] = J+ [J3,J−] = −J− [J+,J−] = 2J3 (7)

(b) (3 pts) Define J2 = (J1)2 + (J2)2 + (J3)2. Prove that [J2,Ji] = 0 for i = 1, 2, 3.

Solution:

(a) [J3,J±] = [J3,J1]± i[J3,J2] = iJ2± i(−1)iJ1 = ±(J1± iJ2) which proves the first two identities.
Next, [J+,J−] = [J1 + iJ2,J1 − iJ2] = [J1,J1] + (−i)[J1,J2] + (i)[J2,J1] + [J2,J2] = 2J3

(b) By cyclic symmetry, it suffices to consider i = 1. In this case, [J2
1 + J2

2 + J2
3,J1] = 0 + [J2

2,J1] +
[J2

3,J1] = J2[J2,J1]+[J2,J1]J2+J3[J3,J1]+[J3,J1]J3 = J2(−iJ3)+(−iJ3)J2+J3(iJ2)+iJ2J3 =
0

P4 (4 pts) Suppose that
J2A = αA J3A = βA (8)

where A is a operator and α, β are complex numbers. Prove that

J2(J±A) = α(J±A) J3(J±A) = (β ± 1)(J±A) (9)

where you take all +’s or all −’s.

Solution: J2J± = [J2,J±] + J±J2 = J±J2 thus J2(J±A) = J±(J2A) = J±(αA) = α(J±A).
Likewise, J3J± = [J3,J±] + J±J3 = ±J±+ J±J3 thus J3(J±A) = ±J±A + J±J3A = (β± 1)(J±A).

P5 (6 pts) Suppose that we have an operator, A such that [J3,A] = kA where k is a non-negative integer.
For the sake of notation, write Tk = A, and define Tq−1 = [J−,Tq] for q = k, k − 1, k − 2, .... Prove
that [J3,Tq] = qTq

Solution: Let us prove by induction that [J3,Tq] = qTq going from q = k down. The base case
q = k is given. Now notice that by the Jacobi identity,

[J3,Tq−1] = [J3, [J−,Tq]] = −([J−, [Tq,J3]] + [Tq, [J3,J−]]) (10)

Using [J3,J−] = −J− and the inductive hypothesis gives us

= −([J−,−qTq] + [Tq,−J−]) = (q − 1)[J−,Tq] = (q − 1)Tq−1 (11)
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3 Counting with the Lie Product Formula (30 pts)

Operator Exponentials: Just as we can take a real number x, and then form a new real number, ex, we can
define the exponential of an operator using a similar formula:

ex = 1 + x+
x2

2!
+
x3

3!
+ . . . =

∞∑
k=0

xk

k!
→ exp(A) ≡ I + A +

A2

2!
+

A3

3!
+ ... =

∞∑
k=0

Ak

k!
(12)

where A0 = I is the identity operator as defined in the introduction.
We know that for real numbers, ex+y = exey. Suppose that instead of real numbers, we have operators, X

and Y. A natural question to ask is: what can we say about exp(X+Y)? While exp(X+Y) 6= exp(X) exp(Y)
generally, the Lie product formula gives a way to represent exp(X + Y) in terms of products of exp

(
X
n

)
and

exp
(
Y
n

)
:

exp(X + Y) = lim
n→∞

Mn where Mn =

(
exp

(
X

n

)
exp

(
Y

n

))n
(13)

If you are not familiar with limits, the intuitive idea is that if we take n to be very large, then the right
side becomes the left side. We will not prove the lie product formula, but we will see that there are many
counting problems hidden in the polynomial expansion of both sides. Let us consider the example of n = 2.
In order to investigate this operator, we need to go back to the definition of the operator exponential and
substitute it in to the previous equation to get:

M2 = exp

(
X

2

)
exp

(
Y

2

)
exp

(
X

2

)
exp

(
Y

2

)
(14)

=

(
I +

X

2
+

1

2!

(
X

2

)2

+ . . .

)(
I +

Y

2
+

1

2!

(
Y

2

)2

+ . . .

)(
I +

X

2
+

1

2!

(
X

2

)2

+ . . .

)(
I +

Y

2
+

1

2!

(
Y

2

)2

+ . . .

)
(15)

Recalling that XY 6= YX, we can expand out the above expression to get a polynomial function1 of X
and Y.

P6 (4 pts) Find a, b, c, d, e, f, g if after expanding the expression for M2, we get:

M2 = aI + bX + cY + dX2 + eXY + fYX + gY2 + . . . (16)

(No proof necessary). Solution: Expanding out straightforwardly gives (a, b, c, d, e, f, g) = (1, 1, 1, 1/2, 3/4, 1/4, 1/2).

We call this finding the expansion of M2 to second order because we are finding the coefficients of all
terms with degree less than equal to degree 2.

P7 (7 pts) Suppose that n is a positive integer. Find, with proof, the expansions of Mn and exp(X + Y)
to second order and show that their difference goes to zero if we let n go to infinity.

Solution: First, consider Mn. There are 2n factors to expand out. Zeroth order is 1I. For first
order, there are n ways to choose one X

n so we get 1X. Same with 1Y. Let us consider X2. There

are two ways to do this. First, we can pick two factors of X
n for a coefficient of

(n
2)
n2 . The other way

is to choose one factor of X2. This can be done in n ways to get
n 1

2!

n2 . This gives a total coefficient of
1
2X2. The same argument gives 1

2Y2. For XY, suppose that we choose Y from the jth factor where

j = 1, 2, . . . n. Then there are j ways to choose a X. So the total coefficient is
∑n

j=1 j

n2 = 1
2 + 1

2n . Finally

1Technically, polynomials have only a finite number of terms. The appropriate description of what we are doing is a formal
power series expansion, but we will not be concerned with this distincition.
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for YX, we use the same argument, except we take X from the jth factor, and then there are j − 1

choices for Y. This gives us a coefficient of
∑n−1

j=1 j

n2 = 1
2 −

1
2n .

Second, we can show that the expansion of exp(X + Y) is I + X + Y + 1
2X2 + 1

2XY + 1
2YX + 1

2Y2.

Finally the difference is XY−YX
2n , which goes to zero as n goes to infinity.

P8 (7 pts) Find, with proof, the coefficient of X10Y10 in the expansion of M2.

Solution: Two cases. First, suppose that when we expand, we take at least one factor of Y from the
first factor. Then no factors of X can be taken from the second factor with X’s. Thus we can ignore
the X’s from the second factor. If we multiply exp(Y/2) exp(Y/2), we get exp(Y). The coefficient of
Y10 is 1

10! . The coefficient from X10 is 1
21010! . Second, We take all of our factors of Y from the second

Y factor. Then all of the X factors come from the first two terms, and we use the same argument as

before. We double counted a term X10Y10

10!21010!210 It follows that the answer is
211 − 1

220(10!)2
.

P9 (12 pts) In the polynomial expansion of Mn, find, with proof, the coefficient of (XY)
k

= XYXY . . .XY
where k is a positive integer.

Solution: It is sufficent to consider the expansion of ((I + X)(I + Y))n because there are no powers
of X2 in the term that we want the coefficient of. In the end, we will multiply by 1

n2k to account for
X and Y being divided by n. When we expand out the expression above to get the desired coefficient,
we choose which factor to pull out X and Y. Let i1 be the factor that the first Y comes from. i2 is the
number of factors after that factor to get the next factor of Y, etc, until ik. Given these placements of
Y’s, there are i1 · . . . · lk ways to choose the X’s. Call ik+1 = n− i1 − ...− ik ≥ 0 Thus the coefficient
we want is ∑

∑k+1
j=1 ij=n

k∏
j=1

ij (17)

where i1, . . . , ik ≥ 1 and ik+1 ≥ 0. However, this is just the xn coefficient of

(x+ 2x2 + 3x3 + . . .)k(1 + x+ x2 + . . .) = xk(1− x)−(2k+1) (18)

This is the n− kth coefficient of (1− x)−(2k+1), which is given by the binomal series:

(−1)n−k
(
−(2k + 1)

n− k − 1

)
= (−1)n−k

(−2k − 1)(−2k − 2) · . . . · (−2k − 1− n+ k + 1)

(n− k)!
=

(
n+ k

2k

)
(19)

It follows that the final answer for the coefficient is

(
n+k
2k

)
n2k

4 Rotations with Operator Exponentials (45 pts)

In this section, we will show that we can rotate vectors about axes using our noncommutative operators.
First, let us explain the geometric problem: suppose that we are given the components of some vector ~a and
we rotate that vector about the n̂ axis an angle θ. Call the resulting vector ~b. What are the components of
~b?
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Before we can proceed, we need two definitions:

Generator of Rotations Suppose that ~J = (J1,J2,J3) and ~X = (X1,X2,X3) are two triples of operators.

We say that ~J generates vector rotations on ~X if

1. (J1,J2,J3) forms an angular momentum algebra.

2. [Ji,Xj ] = i
∑3
k=1 εi,j,kXk. Note the i in front of the sum is

√
−1 and the subscript i is 1, 2, 3.

3. X1,X2,X3 are linearly independent.

In order to use the commutators, let us first associate the vectors ~a = (a1, a2, a3) and so on with operators:

~a = (a1, a2, a3) ↔ ~a · ~X = a1X1 + a2X2 + a3X3

n̂ = (n1, n2, n3) ↔ n̂ · ~J = n1J1 + n2J2 + n3J3

~b = (b1, b2, b3) ↔ ~b · ~X = b1X1 + b2X2 + b3X3

where n21 + n22 + n23 = 1 and ~J generates vector rotations on ~X. We will prove that ~a can be rotated about
n̂ an angle of θ using the following equation:

exp(−iθn̂ · ~J)~a · ~X exp(iθn̂ · ~J) = ~b · ~X (20)

Let us begin with some problems. Be sure to use the definition of the exponential of an operator.

P10 (7 pts) Prove that exp((s+ t)A) = exp(sA) exp(tA).

Solution: We expand using the definition of the operator exponential

exp(sA) exp(tA) =

∞∑
m=0

sm
Am

m!

∞∑
n=0

tn
An

n!
=
∞∑
m=0

∞∑
n=0

(
m+n
m

)
(m+ n)!

Am+nsmtn (21)

Rearranging to sum over specific powers of A, we get

∞∑
k=0

k∑
l=0

(
k
l

)
k!

Aksltk−l =
∞∑
k=0

Ak

k!
(s+ t)k = exp((s+ t)A) (22)

P11 The Hadamard Lemma:

5
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(a) (7 pts) Suppose that B0 = B and that Bn+1 = [A,Bn] for n ≥ 0. Prove the following lemma
for N ≥ 1.

[AN ,B0] =
N∑
j=1

(
N

j

)
BjA

N−j (23)

Solution: Proceed by induction. N = 1 gives [A,B0] = B1, which is clear. Now,

[AN+1,B0] = A[AN ,B0] + [A,B0]AN (24)

= A
N∑
j=1

(
N

j

)
BjA

N−j + B1A
N =

N∑
j=1

(
N

j

)
([A,Bj ] + BjA)AN−j + B1A

N (25)

=

N∑
j=1

(
N

j

)
Bj+1A

N−j +

N∑
j=1

(
N

j

)
BjA

N+1−j + B1A
N (26)

=
N+1∑
j=2

(
N

j − 1

)
BjA

N+1−j +
N∑
j=1

(
N

j

)
BjA

N+1−j + B1A
N (27)

= BN+1 +

N∑
j=2

((
N

j − 1

)
+

(
N

j

))
BjA

N+1−j +NB1A
N + B1A

N (28)

Then using Pascal’s identity and collecting the other terms back into the sum gives the desired
result.

(b) (4 pts) Prove that2

[exp(A),B0] =
∞∑
j=1

Bj

j!
exp(A) (29)

Solution: Using the identity in the previous part,

[exp(A),B0] =
∞∑
N=0

1

N !

N∑
j=1

(
N

j

)
BjA

N−j =
∞∑
j=1

∞∑
N=j

1

(N − j)!j!
BjA

N−j (30)

=
∞∑
j=1

Bj

∞∑
M=0

1

M !j!
AN =

∞∑
j=1

Bj

j!
exp(A) (31)

(c) (3 pts) Prove that

exp(A)B exp(−A) =
∞∑
j=0

Bj

j!
(32)

Solution: First, note that exp(A) exp(−A) = exp(0) = I with s = 1, t = −1 from the identity
in the start of this section. Using the previous equation, we multiply by both sides on the right
by exp(−A) and then

[exp(A),B0] exp(−A) = exp(A)B exp(−A)−B0 exp(A) exp(−A) (33)

Moving B0 to the right gives us the result.

2Ignore issues of convergence.
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P12 (7 pts) Suppose that ~J generates rotations on ~X. Use the Hadamard Lemma to prove that

exp(−iθJ3)[x1X1 + x2X2 + x3X3] exp(iθJ3) = a1X1 + a2X2 + a3X3 (34)

where (a1, a2, a3) = (x1 cos θ−x2 sin θ, x1 sin θ+x2 cos θ, x3). The following identities might be helpful:

cos θ = 1− θ2

2!
+
θ4

4!
− θ6

6!
+ . . . sin θ = θ − θ3

3!
+
θ5

5!
− θ7

7!
+ . . . (35)

Solution: This is a direct application of the previous lemma. Set B0 = x1X1 + x2X2 + x3X3 and
A = −iθJ3. Then

B1 = [A,B0] = −iθ[J3, x1X1 + x2X2 + x3X3] = θ(x1X2 − x2X1).

B2 = [A,B1] = −iθ2[J3,−x2X1 + x1X2] = θ2((−x2)X2 + (−x1)X1),

B3 = [A,B2] = −θ3(x1X2 − x2X1)

We notice that Bn+2 = −θ2Bn for n ≥ 1 (if we ignore the X3 term in B0 (this can be proven
inductively, for instance). Thus we split our sum into even and odd terms

∞∑
k=0,even

Bk

k!
= x3X3 + (x1X1 +x2X2)

(
1

0!
− θ2

2!
+

(−θ2)2

4!
+ . . .

)
= x3X3 + (x1X1 +x2X2) cos θ (36)

Likewise,

∞∑
k=0,odd

Bk

k!
= (x1X2 − x2X1)

(
θ

1!
− θ3

3!
+
θ5

5!
+ . . .

)
= (x1X2 − x2X1) sin θ (37)

Adding these two equations gives the result.

P13 (a) (7 pts) Starting with Eq. (20), prove that

(~b− ~a) · ~X = θ(n̂× ~a) · ~X +
∞∑
k=2

θk
~ak
k!
· ~X (38)

where ~ak = n̂× ~ak−1 and ~a0 = ~a and the dot product ~v · ~X means v1X1 + v2X2 + v3X3.

(b) (6 pts) Prove that ∣∣∣∣∣
∞∑
k=2

θk
~ak
k!

∣∣∣∣∣ ≤ |~a|θ2e|θ| (39)

where |~v| =
√
v21 + v22 + v23 denotes the magnitude of the vector ~v.

Solution:

(a) Using the Hadamard Lemma gives a series where

~b · ~X = ~a · ~X + [−iθn̂ · ~J,~a · ~X] + . . . (40)

It suffices to calculate the commutator. We can do this as follows:

−iθ[
3∑
i=1

niJi,
3∑
j=1

ajXj ] = −iθ
3∑
i=1

3∑
j=1

niaj [Ji,Xi] = θ
3∑
i=1

3∑
j=1

niaj

3∑
k=1

εi,j,kXk (41)

Evaluating the sum and using the definition of εi,j,k gives us that [−iθn̂ · ~J, a~X] = θn̂× ~a · ~X. In
other words, taking that commutator is the same as taking the cross product with θn̂. Plugging
this into the Hadamard lemma gives the result.

7
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(b) Since n̂ is a unit vector, we have

|~ak| = |n̂× ~ak−1| ≤ |n̂||~ak−1| ≤ |~ak−1| (42)

Repeating this inductively gives |~ak| ≤ |~a|. Now we use the triangle inequality to prove that the
LHS is less than or equal to

|~a|θ2
∞∑
k=2

|θ|k−2

k!
(43)

Finally, can finish the upper bound by doing:

∞∑
k=2

|θ|k−2

k!
=
∞∑
k=0

|θ|k

(k + 2)!
≤
∞∑
k=0

|θ|k

k!
= e|θ| (44)

P14 (4 pts) Give a geometric proof for why ~b−~a ≈ θ(n̂×~a) when θ is much less than one. Clearly identify
what approximation(s) you used in order to demonstrate this result.

Solution: Consider the diagram given in this section. Let O be the origin, A be the tip of ~a, and
B be the tip of ~b. Furthermore, let the tip of the projection of ~a onto the n̂ axis be point P . By
the fact that we have a rotation, we know that OPA and OPB are right angles. Now, consider the
difference ~BA = ~b− ~a. We approximate the length AB as the circular arc AB using a circle centered
at P with radius PA = PB. In this case, AB ≈ θ ·AP . However, AP = AO sin∠AOP = |~a×~n|. Thus

AB = θ|~a×~n|. Additionally, if θ is small, then the angle BAP is close to 90, so ~b−~a is approximately

parallel to n̂×~a. Since we see that the magnitudes and directions approximately match, ~b−~a ≈ θn̂×~a.

5 Spherical Tensors (40 pts)

This section was not included in the original contest
While we have seen how a simple set of commutation relations capture the essence of rotations of three

dimensional vectors, there is vast and rich structure associated with rotations of more general objects in 3
dimensions. Suppose that

1. ~A generates vector rotations on ~X (see the previous section).

2. ~B generates vector rotations on ~Y.

3. These two rotations are independent in the sense that for all i, j in {1, 2, 3},

[Ai,Bj ] = 0 [Ai,Yj ] = 0 [Xi,Bj ] = 0 [Xi,Yj ] = 0 (45)

Define the total angular momentum Ji = Ai + Bi for i = 1, 2, 3. We will consider how J generates (not
necessarily vector) rotations on the nine objects Ti,j = XiYj where i, j ∈ {1, 2, 3}. To study this question,
we will look at [Ji,Tj,k]. In a sense, we will recombine these nine objects and then divide them into three
types. One type that doesn’t change at all under a rotation, one that behaves like a vector under rotation,
and one with a more general behavior.

P15 Suppose that Ji = Ai + Bi for i = 1, 2, 3.

(a) (3 pts) Prove that [Ji,Jj ] = i
∑3
k=1 εi,j,kJk.

(b) (3 pts) Prove that J1,J2,J3 are linearly independent using the fact that the A’s and the B’s are
linearly independent (see the definition of linearly independent in section 2).

Solution:

8
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(a) Since ~A and ~B are angular momentum algebras and the given commutation relations,

[Ji,Jj ] = [Ai + Bi,Aj + Bj ] = [Ai,Aj ] + [Ai,Bj ] + [Bi,Aj ] + [Bi,Bj ] (46)

i
3∑
k=1

εi,j,kAk + 0 + 0 + i
3∑
k=1

εi,j,kBk = i
3∑
k=1

εi,j,kJk (47)

(b) Suppose that
0 = c1(A1 + B1) + c2(A2 + B2) + c2(A2 + B2) (48)

Taking the commutator of both sides with A1 gives us c2A3− c3A2 = 0. Therefore by the linear
independence of the A’s, we get c2 = c3 = 0. Repeating with say A2 gives c1 = 0 as well.

Transforming like a rank k Spherical Tensor : A collection of 2k + 1 operators T−k,T−k+1,...,Tk is said to

transform like a rank k spherical tensor under ~J if the following are true:

1. (J1,J2,J3) forms an angular momentum algebra.

2. [J3,Tq] = qTq for q = −k,−k + 1, ..., k.

3. [J±,Tq] =
√

(k ∓ q)(k ± q + 1)Tq±1 for q = −k,−k+ 1, ..., k (take all upper signs or all lower signs).3

4. T−k,T−k+1,...,Tk are linearly independent.

where J± = J1 ± iJ2.

P16 (4 pts) Prove that

T0 = ~X · ~Y ≡ X1Y1 + X2Y2 + X3Y3 (49)

transforms like a rank 0 tensor under ~J. In other words, prove that [Jα,T0] = 0 where α is replaced
with 3,+,−.

Solution: Observe that it is equivalent to prove this with α = 1, 2, 3. Then compute:Ji,
3∑
j=1

XjYj

 =
3∑
j=1

[Ji,XjYj ] =
3∑
j=1

Xj [Ji,Yj ]+[Ji,Xj ] Yj = i
3∑
j=1

3∑
k=1

εi,j,k(XjYk+XkYj) (50)

Now we note that εi,j,k = −εi,k,j , split up the sums, and interchanging the dummy variables j, k in the
second sum.

= i
3∑
j=1

3∑
k=1

εi,j,kXjYk + i
3∑
j=1

3∑
k=1

εi,j,kXkYj = i
3∑
j=1

3∑
k=1

εi,j,kXjYk + i
3∑
j=1

3∑
k=1

−εi,k,jXkYj (51)

= i
3∑
j=1

3∑
k=1

εi,j,kXjYk + i
3∑
j=1

3∑
k=1

−εi,j,kXjYk = 0 (52)

Span: Let M1,M2, ..,Mk be operators. Then the span of M1, . . . ,Mk is the set of all elements of the form
c1M1 + c2M2 + . . .+ ckMk where c1, . . . , ck are complex numbers.

P17 (a) (4 pts) Find three operators T−1,T0,T1 in Span(X1,X2,X3) such that both of the following
are true:

i. Tq where q = −1, 0, 1 transforms like a spherical tensor of rank 1

3Note for + and q = k, we have [J+,Tk] =
√

(k − k)(k + k + 1)Tk+1 = 0 so we don’t have to worry about Tk+1 technically
not being defined and we just say that [J+,Tk] = 0. Similarly with − and q = −k.

9
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ii. If T0 = c1X1 + c2X2 + c3X3, then c3 ≥ 0 and |c1|2 + |c2|2 + |c3|2 = 1.

(b) (10 pts) Let V be the span of the nine operators XiYj where i, j ∈ {1, 2, 3}. Find three
operators in V that transform like a spherical tensor of rank 1. Hint: Prove that if Zj =∑3
l=1

∑3
m=1 εj,l,mXlYm, then J generates vector rotations on ~Z.

Solution:

(a) Since T0 is in the span the Xi’s, we can write it as in (b). Plugging that into the first property
of spherical tensors for k = 1, q = 0, we get 0T0 = [J3,T0] = c1X2 − c2X1. It follows that
c1 = c2 = 0 by the linear independence of the X’s. Thus we have c3 = 1. Now we apply the
second condition with k = 1, q = 0 to get

[J±,T0] =
√

(1∓ 0)(1± 0 + 1)T±1 = [J1,X3]± i[J2,X3] (53)

It follows that

T±1 = ∓X1 ± iX2√
2

T0 = X3 (54)

To finish the question, we just need to verify the first and second property for q = ±1, k = 1.
Lastly, we need to verify linear independence.

c1(−1)
X1 + iX2√

2
+ c0X3 + c−1

X1 − iX2√
2

= 0 (55)

It follows that c0 = 0, c1 + c−1 = 0 and c1 − c−1 = 0 so c1 = c0 = c−1 = 0.

(b) If we prove the hint, then we are done by the first part because we can recombine the comonents
from the vector to get the rank 1 tensor. Let us move on to prove the hint. For convenience,
we employ Einstein’s summation convention where if there are two instances of an index, we
implicitly assume that there is a sum there.

[Ji,Zj ] = [Ji, εj,k,lXkYl] = εj,k,l(Xk[Ji,Yl] + [Ji,Xk]Yl) (56)

= iεj,k,l(Xkεi,l,mYm + εi,k,mXmYl) (57)

One can verify that

εj,k,lεi,l,m = δi,kδm,j − δi,jδk,m εj,k,lεi,k,m = δi,jδl,m − δj,mδl,i (58)

From which it follows that

= i(XiYj − δi,jXkYk + δi,jXmYm −XjYi) = i(XiYj −XjYi) (59)

Correspondingly, we compute

εi,j,kZk = εi,j,kεk,l,mXlYm = (δi,lδj,m − δi,mδj,l)XlYm = XiYj −XjYi (60)

Thus it follows that
[Ji,Zj ] = iεi,j,kZk (61)

P18 (a) (10 pts) Suppose that we have an operator, A such that [J3,A] = kA and [J+,A] = 0 where
2k is a non-negative integer. For the sake of notation, write Tk = A, and define Tq−1 =

1√
(k+q)(k−q+1)

[J−,Tq] for q = k, k − 1, ...,−k. Assume that Tq 6= 0 for q = k, k − 1, ...,−k, but

T−k−1 = 0. Prove that the 2k + 1 matrices Tq for q = −k, ..., k form a spherical tensor of rank
k. Hint: Use the Jacobi Identity to calculate commutators like [J3, [J−,Tq]].

10
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(b) (6 pts) Let V be the span of the nine operators XiYj where i, j ∈ {1, 2, 3}. Find five operators
in V that transform like a spherical tensor of rank 2.

Solution:

(a) The part of the relations with the J− are satisfied by construction. Now lets look at the J3

identities. Let us prove by induction that [J3,Tq] = qTq going from q = k down to q = −k. The
base case q = k is given. Now notice that by the Jacobi identity, for α = 1√

(k+q)(k−q+1)

[J3,Tq−1] = [J3, α[J−,Tq]] = −α([J−, [Tq,J3]] + [Tq, [J3,J−]]) (62)

Using [J3,J−] = −J− and the inductive hypothesis gives us

= −α([J−,−qTq] + [Tq,−J−]) = (q − 1)α[J−,Tq] = (q − 1)Tq−1 (63)

Now lets prove the J+ type identities. We will prove by induction that [J+,Tq] =
√

(k − q)(k + q + 1)Tq+1

for q = k, k − 1, ...,−k. The base case q = k is given. Following the strategy from before, for
α = 1√

(k+q)(k−q+1)

[J+,Tq−1] = [J+, α[J−,Tq]] = −α([J−, [Tq,J+]] + [Tq, [J+,J−]]) (64)

Using the inductive hypothesis and what we we proved previously, we get

−[J−, [Tq,J+]] = [J−,
√

(k − q)(k + q + 1)Tq+1]
√

(k − q)(k + q + 1)
√

(k + q + 1)(k − (q + 1) + 1)Tq

(65)
Using [J+,J−] = 2J3, −[Tq, [J+,J−]] = −[Tq, 2J3] = 2qTq. Combining these relations,

[J+,Tq−1] = α((k − q)(k + q + 1) + 2q)Tq) (66)

Then noting that α(k − q)(k + q + 1) + 2q = α(k + q)(k − q + 1) =
√

(k + q)(k − q − 1) =√
(k − (q − 1))(k + (q − 1) + 1), we get the result.

Lastly, we must prove linear independence. Suppose that
∑k
q=−k cqTq = 0. Suppose that Q is

the largest integer such that cQ 6= 0. Now take commutators of both sides with J− Q+ k times.
This gives us cQ(constants)T−k = 0. But it is assumed that T−k 6= 0, so cQ = 0, a contradiction.
Thus all cq = 0.

(b) Use the construction in the previous problem to take (X1,X2,X3) to a spherical tensor of rank

1: X′q for q = −1, 0, 1. Do the same with ~Y. Now we use the first part of this question, and note
that

[J3,X
′
1Y
′
1] = [A3,X

′
1]Y′1 + X′1[A3,Y

′
1] + [B3,X

′
1]Y′1 + X′1[B3,Y

′
1] = 2X′1Y

′
1 (67)

Thus our A = X′1Y
′
1. To finish, we just need to repeatedly apply J−. Then we get

T1 =
1√
2

(X′1Y
′
0 + X′0Y

′
1) T0 =

1√
6

(X′1Y
′
−1 + 2X′0Y

′
0 + X′−1Y

′
1) (68)

T−1 =
1√
2

(X′−1Y
′
0 + X′0Y

′
−1) T−2 = X′−1Y

′
−1 (69)

Then the final answers follow from plugging in the following relations (and with X→ Y).

X′±1 = ∓X1 ± iX2√
2

X0 = X3 (70)

Operator Space: We will call V a operator space if the following are true:

11
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(a) V is nonempty set of operators.

(b) If A ∈ V implies that cA ∈ V for all complex numbers, c.

(c) If A ∈ V and B ∈ V , then (A + B) ∈ V .

P19 (10 pts) Suppose that the collection of 2k+1 operators Tq operators for q = −k,−k+1, ..., k transform
like a rank k spherical tensor. Let V = Span (T−k,T−k+1, ...,Tk). Let fi(A) = [Ji,A] for i = 1, 2, 3.
Suppose that S ⊂ V is an operator space such that S 6= {0} and A ∈ S implies [Ji,A] ∈ S. Prove
that S = V .

6 Calculating operator Exponentials (XX pts)

This section was not included in the original contest. Note that an explicit example of operators
are n by n matrices. This section has one do some computations.

Hint: Begin by computing A2 = AA, A3 = AAA, etc.

1. (2 pts) Find exp(A) where

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 (71)

Note: if you found that A2 = A, you are not multiplying the operators correctly and you should see
the appendix to make sure that you understand how to multiply operators.

Solution: Computing powers of A, we see that A4 = 0, so the answer just consists of the first three
terms of the summation, which give us

exp(A) =


1 1 1

2
1
6

0 1 1 1
2

0 0 1 1
0 0 0 1

 (72)

2. (4 pts) Find exp(B) where

B =


1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

 (73)

Solution: We can show by induction that

Bn =


1 0 0 n
0 1 0 0
0 0 1 0
0 0 0 1

 (74)

Now we sum. The diagonal entries, we get
∑∞
k=0

1
k! = e. In the top right, we get

∑∞
k=0

k
k! =

∑∞
k=1

k
k! =

e. Thus the answer is

exp(B) =


e 0 0 e
0 e 0 0
0 0 e 0
0 0 0 e

 (75)
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3. (7 pts) Find exp(C) where

C =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 (76)

Solution: One can observe a pattern and use induction, however, here is a solution that offers a bit
more insight. Observe that C = I + A where A4 = 0. Thus

Cn = (I + A)n =
n∑
j=0

(
n

j

)
Aj =

3∑
j=0

(
n

j

)
Aj (77)

where
(
n
j

)
= 0 if j > n. Now we just sum to get

exp(C) =
∞∑
n=0

3∑
j=0

(
n

j

)
Aj

n!
=

3∑
j=0

Aj
∞∑
n=0

(
n
j

)
n!

(78)

Now,
∞∑
n=0

(
n
j

)
n!

=
∞∑
n=j

1

j! · (n− j)!
=

e

j!
(79)

It follows that the answer is

exp(C) =


e e e/2 e/6
0 e e e/2
0 0 e e
0 0 0 e

 (80)

7 The SU(2) Angular Momentum Algebra (XX pts)

This section also did not appear in the actual contest. Here is a specific realization of an
angular momentum algebra in terms of matrices.

1. So far, we have considered angular momentum algebras to be abstract objects that we can manipulate
without refering to particular operators that satisfy the relations in Eq. (??). Now we will consider
an example. Define the operators

A1 =
1

2
·
[

0 1
1 0

]
A2 =

1

2
·
[

0 −i
i 0

]
A3 =

1

2
·
[

1 0
0 −1

]
(81)

2. (3 pts) Show that the operators A1,A2,A3 satisfy Eq. (??).

3. (3 pts) Find all 2 by 1 operators, v, with corresponding complex numbers λ1, λ2 such that A2v = λ1v
and A3v = λ2v.

4. Write exp(A)B exp(−A) as
∑3
i=1 ciAi for the following cases:

(a) (2 pts) A = ixA3, B = A1.

(b) (4 pts) A = ixA1, B = A2.

13
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8 The Eigenvalues of J2 and J3 (24 pts)

This section was not included in the original contest. The focus of this section is that the
eigenvalues of the operators of an angular momentum algebra can only take on discrete values!

1. Matrix eigenvalues Suppose that we have a matrix, M . A column vector, v, is called an eigenvector of
M if and only if

v 6= 0 (82)

and there exists a complex number, λ, which is called the eigenvalue of v with respect to M , such that

Mv = λv (83)

2. Introduction: Since J2 and J3 commute, it can be shown that they have a simultaneous eigenvector.
Let va,b denote a simultaneous eigenvector of J2 and J3 that is normalized. In particular, va,b 6= 0 is
a column vector that satisfies the following:

(va,b)
†va,b = [1] (84)

J2va,b = a va,b J3va,b = b va,b (85)

where a, b are complex numbers.

Furthermore, we will make an additional assumption:

Suppose that for some complex numbers, a, b, there exists is a nonzero column vector, w such that
J2w = aw and J3w = bw. We will assume that then there exists a complex number, c, such that
w = c va,b where va,b is some column vector such that Eqs. (84) and (85) are true.

3. (4 pts) Consider w± = J±va,b. Show that either (1) w± = 0, or (2) w± is an eigenvector of J2 and J3
with eigenvalues of a, b± 1, respectively.

4. (4 pts) In the first case, argue that a = b2 ± b.

5. (4 pts) In the second case, argue that J±va,b can be written as c±a,b va,b±1 where c±a,b is a complex

number that satisfies |c±a,b|2 = a− b2 ∓ b.

6. (2 pts) Suppose that va,b satisfies Eqs. (84) and Eq. (85). Prove that |b| ≤
√
a+ 1

4 + 1
2 .

7. (10 pts) Begin with the existence of va,b as in Eqs. (84) and Eq. (85). Then argue that there must
be a bmax and bmin such that the following are true:

J+va,bmax = J−va,bmin = 0 (86)

bmax = bmin + 2j (87)

where 2j is a non-negative integer. Conclude that the following are true:

bmax = −bmin = j (88)

b ∈ {−j,−j + 1, . . . , j − 1, j} (89)

a = j(j + 1) (90)
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