1. A rectangle with sides a and b has an area of 24 and a diagonal of length 11. Find the perimeter of this rectangle.
Answer: 13
Solution: We have $a b=24$ and $a^{2}+b^{2}=121$. Thus, $a+b=\sqrt{169}=13$.
2. Two rays start from a common point and have an angle of 60 degrees. Circle C is drawn with radius 42 such that it is tangent to the two rays. Find the radius of the circle that has radius smaller than circle C and is also tangent to C and the two rays.
Answer: 21
Solution: Let the intersection of the rays be A. Also let O be the center of circle C and P be the center of the smaller circle. Draw line $O P$ and extend it such that it intersects A. We know these points are collinear because O and P are equidistant from the rays (verified by dropping perpendicular lines from O and P to the rays). Also, line $O A$ bisects the angle between the rays. Now draw a line from O to a ray but is perpendicular to the ray. Call this point M. We know that $\angle O A M$ is 30 degrees, and that $\angle A M O$ is right (perpendicular). Thus $\angle A P M$ is 30 degrees. Now draw a perpendicular line from P to $O M$, and call this point N. Let the radius we want to find be r. We know that $O P=r+42$ and that $O N=O M-N M=42-r$. Now we can equate $\cos (60)=\frac{O N}{O P}=\frac{r+42}{r-42}=\frac{1}{2}$. Solving for r we get 21 .
3. Given a regular tetrahedron $A B C D$ with center O, find $\sin \angle A O B$.

Answer: $\frac{2 \sqrt{2}}{3}$
Solution: Assume the edge length is 1 . Let E be the center of triangle ABC . The height of triangle ABC is $\frac{\sqrt{3}}{2}$,so $\mathrm{AE}=\frac{2}{3} \frac{\sqrt{3}}{2}=\frac{1}{\sqrt{3}}$. Triangle AED is a right triangle, so the tetrahedron's height $\mathrm{DE}=\sqrt{\frac{2}{3}}$. Thus, DO is $\frac{3}{4} \sqrt{\frac{2}{3}}=\frac{\sqrt{6}}{4}$. Thus AOB is an isosceles triangle with base length 1 and leg length $\frac{\sqrt{6}}{4}$. Letting θ be angle AOB, and using the Law of Cosines:

$$
1=\frac{3}{8}+\frac{3}{8}-\frac{3}{4} \cos (\theta)
$$

, so $\theta=\cos ^{-1}\left(-\frac{1}{3}\right)$. Then, $\sin \theta=\frac{2 \sqrt{2}}{3}$.
4. Two cubes A and B have different side lengths, such that the volume of cube A is numerically equal to the surface area of cube B. If the surface area of cube A is numerically equal to six times the side length of cube B, what is the ratio of the surface area of cube A to the volume of cube B ?
Answer: $\frac{1}{1296}$
Solution: If cube A has side length a and cube B has side length b, then $a^{3}=6 b^{2}$ and $6 a^{2}=6 b$, so $\frac{1}{a}=6$ or $a=\frac{1}{6}$ and $b=\frac{1}{36}$. Then, $\frac{6 a^{2}}{b^{3}}=\frac{1}{b^{2}}=\frac{1}{1296}$.
5. Points A and B are fixed points in the plane such that $A B=1$. Find the area of the region consisting of all points P such that $\angle A P B>120^{\circ}$.
Answer: $\frac{2 \pi}{9}-\frac{\sqrt{3}}{6}$
Solution: Pick a point Q such that $\angle A Q B=120$. Let O be the center of the circumcircle of $\triangle A Q B$ and let M be the midpoint of $A B$. Note that any point within the region of the circle formed by the segment $A B$ and the minor arc $A B$ will satisfy the requirements for P. The area of this region is equal to the area of the sector formed by $A B$ and the triangle $A O B$. Since $\angle A O B=120^{\circ}, \angle M O B=60^{\circ}$. We know $\angle B M O=90^{\circ}$, so since $A M=\frac{1}{2}$, we have $O M=\frac{1}{2 \sqrt{3}}$ and $O B=\frac{1}{\sqrt{3}}$. This gives $[\triangle A O B]=\frac{1}{2} \cdot \frac{1}{2 \sqrt{3}}=\frac{\sqrt{3}}{12}$ and the area of the sector is $\frac{1}{3} \pi\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{9}$. Then the area of the region is $\left(\frac{\pi}{9}-\frac{\sqrt{3}}{6}\right)$. Note that we can construct two such regions, one on each side of segment $A B$. Then the answer is twice the area of one such region, giving us $2\left(\frac{\pi}{9}-\frac{\sqrt{3}}{6}\right)=\frac{2 \pi}{9}-\frac{\sqrt{3}}{6}$.
6. Let $A B C D$ be a cyclic quadrilateral where $A B=4, B C=11, C D=8$, and $D A=5$. If $B C$ and $D A$ intersect at X, find the area of $\triangle X A B$.
Answer: $6 \sqrt{5}$
Solution: Denote the lengths of $X A, X B$ by x, y, respectively. Since $A B C D$ is cyclic, the triangles $X A B$ and $X C D$ are similar (AA) and we get

$$
\frac{y+11}{x}=\frac{8}{4}=\frac{x+5}{y},
$$

so $y+11=2 x$ and $x+5=2 y$. Solving gives $x=7, y=9$. Recalling Heron's formula we obtain the answer $[X A B]=\sqrt{10 \cdot 6 \cdot 3 \cdot 1}=6 \sqrt{5}$.
7. Let $A B C$ be a triangle with $B C=5, C A=3$, and $A B=4$. Variable points P, Q are on segments $A B, A C$, respectively such that the area of $A P Q$ is half of the area of $A B C$. Let x and y be the lengths of perpendiculars drawn from the midpoint of $P Q$ to sides $A B$ and $A C$, respectively. Find the range of values of $2 y+3 x$.
Answer: [6, 6.5]
Solution: Use coordinates where you place $A=(0,0), B=(0,4), C=(3,0) . P=(a, 0)$, $Q=(0, b)$ where $a \in[0,3]$ and $b \in[0,4]$. Then the area condition gives us that $a b=6$. Note $M=\frac{1}{2}(a, b)=(x, y)$. Thus $x \in[0,3 / 2], y \in[0,2]$ and $x y=3 / 2$. Using $y=\frac{3}{2 x}$, we have $x \geq \frac{3}{4}$. Thus we need to find the range of

$$
\frac{3}{x}+3 x \quad x \in[3 / 4,3 / 2]
$$

The minimum, by AM-GM is 6 for $x=1$ which is in the interval. Checking the endpoints, we get values of 6.25 and 6.5 . Thus the range is $[6,6.5]$.
8. $A B C$ is an isosceles right triangle with right angle B and $A B=1 . A B C$ has an incenter at E. The excircle to $A B C$ at side $A C$ is drawn and has center P. Let this excircle be tangent to $A B$ at R. Draw T on the excircle so that $R T$ is the diameter. Extend line $B C$ and draw point D on $B C$ so that $D T$ is perpendicular to $R T$. Extend $A C$ and let it intersect with $D T$ at G. Let F be the incenter of $C D G$. Find the area of $\triangle E F P$.
Answer: $1+\sqrt{2}$
Solution: I was going to make it harder but I gave up, because I can't do geometry. There are a ton of similar triangles in this figure (i.e. $(A B C, C D G),(C Q F, P Q D),(P C Q, D F Q)$, $(D F C, F Q C),(B E P, D F P),(B E P, C E P),(P D Q, C D F))$. We can probably make harder problems using similar triangles in other ways. But, back to the solution: The radius of an excircle at side c is given by $\frac{2 K}{a+b-c}$, where K is the area of the triangle, so we have $P R=\frac{1}{2-\sqrt{2}}=1+\frac{\sqrt{2}}{2}$. Additionally, we have $P R=P T=T D$, so $P D=\sqrt{2} P R$, and $C D=2 P R-1$, and solving for both gives us $P D=C D=1+\sqrt{2}$. Then, we notice similar triangles $P D C, A P C$, so $A P=C P, P D=C D$, we have $P D / P C=P C / A C$, so $P C^{2}=A C \cdot P D=2+\sqrt{2}$. We have $\angle A P E=\pi / 8$, so then, we have $A E=P A \tan (\pi / 8)=$ $P C \tan (\pi / 8)$. Additionally, by similar triangles, we have $A E=E C, C F=(1+\sqrt{2})(E C)$, so then, we can solve for the area of $E P F$ as $(E C+C F)(P C) / 2=E C(2+\sqrt{2})(P C) / 2=$ $P C^{2} \tan (\pi / 8)(2+\sqrt{2}) / 2=(2+\sqrt{2})(\tan (\pi / 8))(2+\sqrt{2}) / 2$. Doing some simplifying will give us $1+\sqrt{2}$ as our answer.
9. Let $A B C$ be a triangle. Points D, E, F are on segments $B C, C A, A B$, respectively. Suppoe that $A F=10, F B=10, B D=12, D C=17, C E=11$, and $E A=10$. Suppose that the circumcircles of $\triangle B F D$ and $\triangle C E D$ intersect again at X. Find the circumradius of $\triangle E X F$. Answer: $5 \sqrt{2}$
Solution: One can show that $A E X F$ is cyclic using angle chasing. So it suffices to compute the circumradius of $\triangle A E F, R^{\prime}$. Also $\angle B A C=90^{\circ}$. Noting that $E A F$ is a right triangle, $R^{\prime}=\frac{1}{2} E F=5 \sqrt{2}$.
10. Let D, E, and F be the points at which the incircle, ω, of $\triangle A B C$ is tangent to $B C, C A$, and $A B$, respectively. $A D$ intersects ω again at T. Extend rays $T E, T F$ to hit line $B C$ at E^{\prime}, F^{\prime}, respectively. If $B C=21, C A=16$, and $A B=15$, then find $\left|\frac{1}{D E^{\prime}}-\frac{1}{D F^{\prime}}\right|$.
Answer: $\frac{1}{110}$
Solution: Let the tangent to the incircle at T intersect $B C$ at X. An important lemma states that because $A E, A F$ are tangents and A, T, D are collinear that T, E, D, F is a harmonic quadrilateral. Using point, T, we project this quadrilateral onto line $B C$ to get that $X, F^{\prime}, D, E^{\prime}$ form a harmonic 4-tuple. Thus $\frac{F^{\prime} D}{D E^{\prime}}=\frac{X F^{\prime}}{X E^{\prime}}=\frac{X D-F^{\prime} D}{X D+D E^{\prime}}$. It follows that the desired quantity is equal to $\frac{2}{D X}$. Another important lemma states that X, B, D, C form a harmonic 4-tuple. Thus $\frac{X B}{X C}=\frac{B D}{D C}=\frac{X D-B D}{X D+D C}$. It follows that $\frac{2}{D X}=\left|\frac{1}{B D}-\frac{1}{D C}\right|$. It follows that the answer is $\frac{1}{10}-\frac{1}{11}=\frac{1}{110}$.

P1. Suppose a convex polygon has a perimeter of 1. Prove that it can be covered with a circle of radius $1 / 4$.
Solution: Let A be one of the vertices of the polygon. If we walk around the perimeter of the polygon, the total length of our walk will be one. Let B be the halfway point of the walk, and let the midpoint of $A B$ be O. We claim if the center of the circle is at O, then it will cover the whole polygon. Assume, for contradiction, that there is a point P on the boundary which is not covered by the disk. Then, $O P>1 / 4$. Now, consider the walk of length $1 / 2$ from A to B which passes through P. Then the walk from A to P is at least the length of $A P$, and similarly for P to B and $P B$. Since the walk from A to P to B is $1 / 2$, we have $A P+P B \leq 1 / 2$. Then, consider the reflection of P about point O and denote it P^{\prime}. Then, $A P^{\prime}=B P$ because of the reflection, and $P P^{\prime}=2 O P>1 / 2$. But, we then do not have the triangle inequality satisfied in triangle $P A P^{\prime}$, since $A P+A P^{\prime}=A P+B P \leq 1 / 2$, but $P P^{\prime}>1 / 2$ which is the contradiction that we wanted.

P2. From a point A construct tangents to a circle centered at point O, intersecting the circle at P and Q respectively. Let M be the midpoint of $P Q$. If K and L are points on circle O such that K, L, and A are collinear, prove $\angle M K O=\angle M L O$.
Solution: Since $A P=A Q$, the median $A M$ is also the perpendicular bisector of $P Q$. But the perpendicular bisector of any chord passes through the center of the circle, so O, M, A are collinear. Note that

$$
\triangle O P A \sim \triangle P M A \quad \Longrightarrow \quad \frac{A O}{A P}=\frac{A P}{A M} \quad \Longrightarrow \quad A M \cdot A O=A P^{2}
$$

Also, by Power of a Point, $A P^{2}=A L \cdot A K$. So $A M \cdot A O=A L \cdot A K$, and by the converse of Power of a Point, $K M O L$ is cyclic. It follows that $\angle M K O=\angle M L O$.

