1. Find the value of a satisfying

$$
\begin{aligned}
a+b & =3 \\
b+c & =11 \\
c+a & =61
\end{aligned}
$$

Answer: $\frac{53}{2}$
Solution: Adding the three equations yields $2 a+2 b+2 c=75$, equivalent to $a+b+c=\frac{75}{2}$.
Because $b+c=11$, we conclude $a=(a+b+c)-(b+c)=\frac{75}{2}-11=\frac{53}{2}$.
2. A point P is given on the curve $x^{4}+y^{4}=1$. Find the maximum distance from the point P to the origin.
Answer: $\sqrt[4]{2}$
Solution: The distance from the origin to any point (x, y) on the curve is $\sqrt{x^{2}+y^{2}}$. Because x^{2} and y^{2} are positive real numbers, we apply AM-QM to conclude $\frac{x^{2}+y^{2}}{2} \leq \sqrt{\frac{x^{4}+y^{4}}{2}}=$ $\sqrt{\frac{1}{2}}$. We thus get, by multiplying by two and taking the square root,

$$
\sqrt{x^{2}+y^{2}} \leq \sqrt{2 \cdot \sqrt{\frac{1}{2}}}=\sqrt[4]{2} .
$$

Indeed, $x=y=\sqrt[4]{\frac{1}{2}}$ yields the desired equivalence.
3. Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{e^{3 x}-e^{-3 x}}
$$

Answer: $\frac{1}{3}$
Solution: Recall the definition of the derivative at 0 as $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x}$. Then,

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{e^{3 x}-e^{-3 x}}=\lim _{x \rightarrow 0} \frac{\sin 2 x}{x} \cdot\left(\lim _{x \rightarrow 0} \frac{e^{3 x}}{x}-\frac{e^{-3 x}}{x}\right)^{-1}=2 \cdot(3+3)^{-1}=\frac{1}{3} .
$$

4. Given a complex number z satisfies $\operatorname{Im}(z)=z^{2}-z$, find all possible values of $|z|$.

Answer: $\left\{0, \frac{\sqrt{2}}{2}, 1\right\}$
Solution: Setting $z=\operatorname{Re}(z)+\operatorname{Im}(z) i$, where $\operatorname{Re}(z)$ and $\operatorname{Im}(z)$ are real numbers, we find $\operatorname{Im}(z)=\operatorname{Re}(z)^{2}-\operatorname{Im}(z)^{2}-\operatorname{Re}(z)+(2 \operatorname{Re}(z) \operatorname{Im}(z)-\operatorname{Im}(z)) i$. Inspecting the imaginary part, we notice either $2 \operatorname{Re}(z)-1=0$ or $\operatorname{Im}(z)=0$. Because we have the further condition imposed by the real part $\operatorname{Im}(z)^{2}-\operatorname{Im}(z)=\operatorname{Re}(z)^{2}-\operatorname{Re}(z)$, we find all solutions $\frac{1}{2}-\frac{1}{2} i, 0$, and 1 . Thus, $|z| \in\left\{0, \frac{\sqrt{2}}{2}, 1\right\}$.
5. Suppose that $c_{n}=(-1)^{n}(n+1)$. While the sum $\sum_{n=0}^{\infty} c_{n}$ is divergent, we can still attempt to assign a value to the sum using other methods. The Abel Summation of a sequence, a_{n}, is $\operatorname{Abel}\left(a_{n}\right)=\lim _{x \rightarrow 1^{-}} \sum_{n=0}^{\infty} a_{n} x^{n}$. Find $\operatorname{Abel}\left(c_{n}\right)$.
Answer: $\frac{1}{4}$
Solution: $\sum_{n=0}^{\infty} c_{n} x^{n}=\frac{1}{(1+x)^{2}}$ for $|x|<1$. Taking x to 1 gives $\frac{1}{4}$.
6. The minimal polynomial of a complex number r is the unique polynomial with rational coefficients of minimal degree with leading coefficient 1 that has r as a root. If f is the minimal polynomial of $\cos \frac{\pi}{7}$, what is $f(-1)$?
Answer: $-\frac{7}{8}$
Solution: Recall $x=\cos \frac{\pi}{7}=\frac{1}{2}\left(e^{i \pi / 7}+e^{-i \pi / 7}\right)$. Additionally, $8 x^{3}=e^{3 i \pi / 7}+3 e^{i \pi / 7}+$ $3 e^{-i \pi / 7}+e^{-3 i \pi / 7}, 4 x^{2}=e^{2 i \pi / 7}+2+e^{-2 i \pi / 7}$, and $2 x=e^{i \pi / 7}+e^{-i \pi / 7}$. Thus,

$$
g(x)=8 x^{3}-4 x^{2}-4 x+1=e^{3 i \pi / 7}-e^{2 i \pi / 7}+e^{i \pi / 7}-1+e^{-i \pi / 7}-e^{-2 i \pi / 7}+e^{-3 i \pi / 7} .
$$

We claim the right hand side in the above equation has numeric value 0 , and this follows from $e^{i \pi / 7}$ being a fourteenth root of unity but not a seventh root of unity (or -1).

$$
x^{1} 4-1=\left(x^{7}-1\right)\left(x^{7}+1\right)=\left(x^{7}-1\right)(x+1)\left(x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)
$$

whence we determine $e^{3 i \pi / 7} \cdot\left(e^{3 i \pi / 7}-e^{2 i \pi / 7}+e^{i \pi / 7}-1+e^{-i \pi / 7}-e^{-2 i \pi / 7}+e^{-3 i \pi / 7}\right)=0$. Then, applying the rational root test, we determine $g(x)$ has no factors of degree 1 and therefore is irreducible over the rationals. Thus, the minimal polynomial of $\cos \frac{\pi}{7}$ is $f(x)=$ $x^{3}-\frac{1}{2} x^{2}-\frac{1}{2} x+\frac{1}{8}$. Plugging in $x=-1$ yields our answer of $f(-1)=-\frac{7}{8}$.
Note that it is no coincidence the numerator's only factor is the odd prime present in the denominator of $\cos \frac{\pi}{k}$.
7. If x, y are positive real numbers satisfying $x^{3}-x y+1=y^{3}$, find the minimum possible value of y.
Answer: $\frac{1}{3} \sqrt[3]{29-4 \sqrt{7}}$
Solution: Consider the intersection of cubic function $f(x)=x^{3}+1$ and linear function $g(x)=y \cdot x+y^{3}$. In order to minimize the value of y while these functions still have an intersection in the First Quadrant, the linear function must be tangent to $f(x)$. Thus, for some value of intersection $x=a$, we have $f(a)=g(a)$ and $f^{\prime}(a)=g^{\prime}(a)$. Therefore, $a^{3}+1=y a+y^{3}$ and $3 a^{2}=y$. Plugging the latter into the former,

$$
\begin{gathered}
a^{3}+1=3 a^{3}+27 a^{6} \\
27 a^{6}+2 a^{3}-1=0 \\
a^{3}=\frac{2 \sqrt{7}-1}{27} \\
a=\frac{1}{3} \sqrt[3]{2 \sqrt{7}-1} \text { and } y=\frac{1}{3} \sqrt[3]{29-4 \sqrt{7}} .
\end{gathered}
$$

8. Billy is standing at $(1,0)$ in the coordinate plane as he watches his Aunt Sydney go for her morning jog starting at the origin. If Aunt Sydney runs into the First Quadrant at a constant speed of 1 meter per second along the graph of $x=\frac{2}{5} y^{2}$, find the rate, in radians per second, at which Billy's head is turning clockwise when Aunt Sydney passes through $x=1$.
Answer: $\frac{4}{\sqrt{65}}$

Solution:

Let t be the amount of time that has passed, (x, y) be the coordinates of Aunt Sydney's positions and θ be the angle Billy's head makes with the negative x-axis. ($\theta=0$ initially.) We wish to find $\frac{d \theta}{d t}$ when $x=1$. By considering the triangle formed by Billy, Aunt Sydney, and the point $(x, 0)$ we get that $\theta=\tan ^{-1}\left(\frac{y}{1-\frac{2}{5} y^{2}}\right) \cdot \frac{d \theta}{d y}=\frac{1+\frac{2}{5} y^{2}}{\left(1-\frac{2}{5} y^{2}\right)^{2}+y^{2}}$. At $x=1$, $\frac{d \theta}{d x}=\frac{4}{5}$.
Let the distance Aunt Sydney runs be $s=\int_{0}^{y} \sqrt{1+\frac{16 t^{2}}{25}} d t$. Then $1=\frac{d s}{d t}=\frac{d x}{d t} \sqrt{1+\frac{16 y^{2}}{25}}$, so $\frac{d x}{d t}=\frac{1}{\sqrt{1+\frac{16 x^{2}}{25}}}$. At $x=1, \frac{d x}{d t}=\frac{\sqrt{5}}{\sqrt{13}}$. Now $\frac{d \theta}{d t}=\frac{d \theta}{d x} \frac{d x}{d t}=\frac{4}{5} \frac{\sqrt{5}}{\sqrt{13}}=\frac{4}{\sqrt{65}}$.
9. Evaluate the integral

$$
\int_{0}^{1} \sqrt{(x-1)^{3}+1}+x^{2 / 3}-(1-x)^{3 / 2}-\sqrt[3]{1-x^{2}} d x
$$

Answer: $\frac{1}{5}$
Solution: We first show that $\int_{0}^{1} \sqrt{(x-1)^{3}+1}-\sqrt[3]{1-x^{2}} d x=0$. This is easily obtained by considering the graph of $y^{2}=(x-1)^{3}+1$ from $(0,0)$ to $(1,1)$. From this, we
have $\int_{0}^{1} \sqrt{(x-1)^{3}+1} d x+\int_{0}^{1} \sqrt{1-y^{2}}+1 d y=1$. Combining integrals yields the desired equivalence. Then, evaluating the two remaining terms, we obtain an answer of

$$
\int_{0}^{1} x^{2 / 3}-(1-x)^{3 / 2}=\frac{3}{5}-\frac{2}{5}=\frac{1}{5} .
$$

10. Let the class of functions f_{n} be defined such that $f_{1}(x)=\left|x^{3}-x^{2}\right|$ and $f_{k+1}(x)=\left|f_{k}(x)-x^{3}\right|$ for all $k \geq 1$. Denote by S_{n} the sum of all y-values of $f_{n}(x)$'s "sharp" points in the First Quadrant. (A "sharp" point is a point for which the derivative is not defined.) Find the ratio of odd to even terms,

$$
\lim _{k \rightarrow \infty} \frac{S_{2 k+1}}{S_{2 k}}
$$

Answer: $\frac{1}{7}$
Solution: Note that there exist sharp points of $f_{n}(x)$ at all $x=1 / 1,1 / 2,1 / 3, \cdots, 1 / n$ and that (a different) half of them are 0 for odd or even values of n. We then wish to find A / B where $A=\sum_{k=1}^{\infty} \frac{1}{(2 k)^{3}}$ and $B=\sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{3}}$. Noting that $8 A=\sum_{k=1}^{\infty} \frac{1}{k^{3}}=A+B$, we obtain $7 A=B$ or $A / B=1 / 7$.

P1. Prove that for all positive integers m and n,

$$
\frac{1}{m} \cdot\binom{2 n}{0}-\frac{1}{m+1} \cdot\binom{2 n}{1}+\frac{1}{m+2} \cdot\binom{2 n}{2}-\cdots+\frac{1}{m+2 n} \cdot\binom{2 n}{2 n}>0
$$

Solution: Consider the integral

$$
\int_{0}^{1} x^{m-1}(x-1)^{2 n} d x
$$

The integrand $x^{m-1}(x-1)^{2 n}$ is equal to $\sum_{k=0}^{2 n}(-1)^{k}\binom{2 n}{k} x^{m+k-1}$. Thus, the antiderivative of the integrand is equal to $\sum_{k=0}^{2 n} \frac{(-1)^{k}}{m+k}\binom{2 n}{k} x^{m+k}$, and the given integral evaluates to the expression in the question. Then, because x^{m-1} and $(x-1)^{2 n}$ are always positive functions, the area beneath the curve must be positive as well. Thus, the sum is greater than 0 , as desired.

P2. If $f(x)=x^{n}-7 x^{n-1}+17 x^{n-2}+a_{n-3} x^{n-3}+\cdots+a_{0}$ is a real-valued function of degree $n>2$ with all real roots, prove that no root has value greater than 4 and at least one root has value less than 0 or greater than 2 .

Solution: If the roots are r_{1}, \ldots, r_{n}, then $r_{1}+\cdots+r_{n}=7$ and $\left(r_{1}\right)^{2}+\cdots+\left(r_{n}\right)^{2}=15$. Clearly, no root may have value greater than 4 , as $\left(r_{1}\right)^{2}+\cdots+\left(r_{n}\right)^{2}-\left(r_{k}\right)^{2}<-1$ is an impossibility. Furthermore, we may conclude

$$
\sum_{k=1}^{n}\left(r_{k}-1\right)^{2}=\sum_{k=1}^{n}\left(r_{k}\right)^{2}-2 \sum_{k=1}^{n} r_{k}+\sum_{k=1}^{n} 1=15-14+n=n+1 .
$$

If all roots are between 0 and 2 , then all values of $\left(r_{k}-1\right)^{2}$ are below 1 , so $\sum\left(r_{k}-1\right)^{2}<n$, a contradiction. Thus, both results have been realized.

