1. Find the value of a satisfying

$$
\begin{aligned}
a+b & =3 \\
b+c & =11 \\
c+a & =61
\end{aligned}
$$

2. A point P is given on the curve $x^{4}+y^{4}=1$. Find the maximum distance from the point P to the origin.
3. Evaluate

$$
\lim _{x \rightarrow 0} \frac{\sin 2 x}{e^{3 x}-e^{-3 x}}
$$

4. Given a complex number z satisfies $\operatorname{Im}(z)=z^{2}-z$, find all possible values of $|z|$.
5. Suppose that $c_{n}=(-1)^{n}(n+1)$. While the sum $\sum_{n=0}^{\infty} c_{n}$ is divergent, we can still attempt to assign a value to the sum using other methods. The Abel Summation of a sequence, a_{n}, is $\operatorname{Abel}\left(a_{n}\right)=\lim _{x \rightarrow 1^{-}} \sum_{n=0}^{\infty} a_{n} x^{n}$. Find $\operatorname{Abel}\left(c_{n}\right)$.
6. The minimal polynomial of a complex number r is the unique polynomial with rational coefficients of minimal degree with leading coefficient 1 that has r as a root. If f is the minimal polynomial of $\cos \frac{\pi}{7}$, what is $f(-1)$?
7. If x, y are positive real numbers satisfying $x^{3}-x y+1=y^{3}$, find the minimum possible value of y.
8. Billy is standing at $(1,0)$ in the coordinate plane as he watches his Aunt Sydney go for her morning jog starting at the origin. If Aunt Sydney runs into the First Quadrant at a constant speed of 1 meter per second along the graph of $x=\frac{2}{5} y^{2}$, find the rate, in radians per second, at which Billy's head is turning clockwise when Aunt Sydney passes through $x=1$.
9. Evaluate the integral

$$
\int_{0}^{1} \sqrt{(x-1)^{3}+1}+x^{2 / 3}-(1-x)^{3 / 2}-\sqrt[3]{1-x^{2}} d x
$$

10. Let the class of functions f_{n} be defined such that $f_{1}(x)=\left|x^{3}-x^{2}\right|$ and $f_{k+1}(x)=\left|f_{k}(x)-x^{3}\right|$ for all $k \geq 1$. Denote by S_{n} the sum of all y-values of $f_{n}(x)$'s "sharp" points in the First Quadrant. (A "sharp" point is a point for which the derivative is not defined.) Find the ratio of odd to even terms,

$$
\lim _{k \rightarrow \infty} \frac{S_{2 k+1}}{S_{2 k}}
$$

P1. Prove that for all positive integers m and n,

$$
\frac{1}{m} \cdot\binom{2 n}{0}-\frac{1}{m+1} \cdot\binom{2 n}{1}+\frac{1}{m+2} \cdot\binom{2 n}{2}-\cdots+\frac{1}{m+2 n} \cdot\binom{2 n}{2 n}>0
$$

P2. If $f(x)=x^{n}-7 x^{n-1}+17 x^{n-2}+a_{n-3} x^{n-3}+\cdots+a_{0}$ is a real-valued function of degree $n>2$ with all real roots, prove that no root has value greater than 4 and at least one root has value less than 0 or greater than 2 .

