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Section A

Multiple Choice — 1 mark each
Marks will not be deducted for incorrect answers.
Use the multiple choice answer sheet provided.

Suggested time: 20 minutes

Question 1
A large hefty chicken and a small light quail, both flying in midair, have the same kinetic
energy. Which of the following statements is true?

(A) The chicken has a greater speed than the quail.

(B) The quail has a greater speed than the chicken.

(C) The chicken and the quail have the same speed.

(D) Nothing can be inferred, the kinetic energy has nothing to do with the speed.

(E) The direction of the quail and the chicken must be taken into account before a decision
can be made.

Solution: (B) — for the same value of mv2/2 an object with the lesser mass has a greater
speed.

Question 2
The large hefty chicken and the small light quail, still both flying in midair with the same
kinetic energy, fly directly at each other and collide head-on due to a joint navigational error,
and briefly become one fowl object. Which of the following statements is true in the instant
after the collision?

(A) The object moves in the same direction as the chicken’s original motion.

(B) The object moves in the same direction as the quail’s original motion.

(C) The object stops dead in the air.

(D) As soon as they collide they move downward with velocity 9.8 m s−1.

(E) It depends on how hard the chicken hits the quail.

Solution: (A) — for the same value of mv2/2 = (mv)2/2m the momentum p = mv is greater
for an object with greater m and momentum is conserved in the collision.
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Question 3
Lucy is measuring the acceleration due to gravity in Melbourne by dropping a ball through a
vertical distance 1.00 m and timing how long it takes. The ball starts at rest, and Lucy times
its fall four times. The results are: 0.47 s, 0.42 s, 0.48 s and 0.41 s. The uncertainty in her
distance measurement is 1 cm and the uncertainty in the timer is 0.01 s. What is the value of g
from Lucy’s experiment?

(A) 8.68 m s−2

(B) 9.81 m s−2

(C) 9.88 m s−2

(D) 10.1 m s−2

(E) 11.3 m s−2

Solution: (D) — the distance an object falls in a time t due to an acceleration due to gravity g
is s = gt2/2, rearranging gives g = 2s/t2 = 10.1m s−2.

Question 4
The uncertainty in this value of g is

(A) at least 0.01 m s−2 and at most 0.03 m s−2.

(B) more than 0.03 m s−2 but at most 0.1 m s−2.

(C) more than 0.1 m s−2 but at most 0.4 m s−2.

(D) more than 0.4 m s−2 but at most 0.6 m s−2.

(E) more than 0.6 m s−2 but at most 2 m s−2.

Solution: (E) — a value of t = 0.45± 0.04 s just covers the range of measured values, so t has
approximately 9% fractional error. The fractional error in the distance is 1%, so the fractional
error in g is (2× 9 + 1)% = 19% which gives an absolute uncertainty of around 2 m s−2

Question 5
The equation below gives the expected lifetime, L, of a rooster in a Kate’s chicken yard once it
has begun crowing. Note that all variables (including L) are positive, and the angle θ (which
represents the angular height of the sun at 7 am) varies between 0◦ and 90◦.

L =
TN

(V − S) cos θ

Which of the following will increase the life expectancy of a rooster in Kate’s chicken yard?

(A) Decreasing T

(B) Increasing V

(C) Decreasing S

(D) Decreasing θ

(E) None of the above

Solution: (E) — decreasing T , increasing V , decreasing S and decreasing θ all decrease L since
L, T,N, V − S and cos θ are all positive.
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Question 6

A large train has ended up on the road and a small car is pushing it back to the tracks. While
the small car and the large train being pushed are speeding up to cruising speed,

(A) the amount of force with which the small car pushes against the large train is equal to the
amount of force with which the large train pushes back against the small car.

(B) the amount of force with which the small car pushes against the large train is smaller
than the amount of force with which the large train pushes back against the small car.

(C) the amount of force with which the small car pushes against the large train is greater than
the amount of force with which the large train pushes back against the small car.

(D) the small car’s engine is running so the small car pushes against the large train, but the
large train’s engine is not running so it can’t push back against the small car.

(E) neither the small car nor the large train exert any force on the other. The large train is
pushed forward simply because it is in the way of the small car.

Solution: (A) — the forces are an action-reaction pair.

Question 7

A large train has ended up on the road and a small car is pushing it back to the tracks. After
the small car and the large train being pushed have reached a constant cruising speed,

(A) the amount of force with which the small car pushes against the large train is equal to the
amount of force with which the large train pushes back against the small car.

(B) the amount of force with which the small car pushes against the large train is smaller
than the amount of force with which the large train pushes back against the small car.

(C) the amount of force with which the small car pushes against the large train is greater than
the amount of force with which the large train pushes back against the small car.

(D) the small car’s engine is running so the small car pushes against the large train, but the
large train’s engine is not running so it can’t push back against the small car.

(E) neither the small car nor the large train exert any force on the other. The large train is
pushed forward simply because it is in the way of the small car.

Solution: (A) — the forces are an action-reaction pair.
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Question 8

The figure above shows a frustum of a cone. Which of the expressions gives the area of the
curved surface?

(A) π(r1 + r2)[h
2 + (r2 − r1)

2]1/2

(B) 2π(r1 + r2)

(C) πh(r2
1
+ r1r2 + r2

2
)/3

(D) π(r2
1
+ r2

2
)

(E) πh(r1 + r2)

Solution: (A) — the area can be calculated from the area of the curved surface of a cone which

is πR
√
H2 +R2 for a cone of radius R and height H. Alternatively, note that (B) and (C) are

not areas, (D) is the area of the flat surfaces and (E) is the area of a trapezium with height h
and sides of length 2πr1 and 2πr2.

Question 9
Someone analysing an electric circuit obtains the equations

I1(3Ω)− I2(6Ω) = 7V ,

I1(2Ω) + I3(3Ω) = 28V ,

I2(2Ω) + I3(1Ω) = 17V .

Note that V is the unit volts, and Ω is the unit Ohms. I1, I2 and I3 are currents. Which of the
following statements is true?

(A) I1, I3 > 0 , I2 < 0

(B) I1, I3 < 0 , I2 > 0

(C) I1, I2, I3 > 0

(D) I3 > 0 , I1, I2 < 0

(E) I3 < 0 , I1, I2 > 0

Solution: (E) — I1 = 30 A, I2 = 83/6 A and I3 = −32/3 A.

Page 5 c© Australian Science Innovations 2010 ABN 81731558309



Australian Science Olympiads 2010 Physics National Qualifying Examination

Question 10

The figure to the right shows a travelling
wave moving in the positive x–direction.
At time t = 0 s, the wave plotted as a
function of position has the shape shown
by the solid curve, and at t = 3 s, the
shape shown by the dashed curve.
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The following six panels show plots as a function of time, at the position x = 0 m.
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Which of the panels represent possible shapes of the travelling wave?

(A) 4 & 6

(B) 1 & 3

(C) 1, 2 & 3

(D) 4, 5 & 6

(E) 1 & 4

Solution: (B) — 1, 2 & 3 show waves travelling in the positive x-direction, but only 1 & 3 have
y = 0 m at t = 3 s.
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Section B

Written Answer Questions
Attempt ALL questions in this part.

You may be able to do later parts of a question even if you cannot do earlier parts.
Remember that if you don’t try a question, you can’t get any marks for it — so have a go at
everything!
Suggested times to spend on each question are given. Don’t be discouraged if you take longer than
this — if you complete it in the time suggested consider that you’ve done very well.

Question 11 Suggested time: 25 minutes
A particle of mass m is initially travelling at constant velocity in the x–direction with
momentum p1. This particle hits a second, initially stationary particle of mass M . After the
collision both particles are moving in the x–y plane and have constant velocity. The first
particle has momentum p2 with components p2x and p2y in the x– and y–directions respectively.

(a) In terms of m, M , p1, p2x and p2y, find K2, the final kinetic energy of the first particle
(mass m) and KM , the final kinetic energy of the second particle (mass M). p1 is the
magnitude of the vector p1.

Solution: (3 marks)

m Mp
1

Initial:

m

M

p
2x

Final:

K
M

K
2

p
2y

p
2

p
M

K2 =
p2
2

2m
=

p2
2x + p2

2y

2m
.

KM =
p2M
2M

=
p2Mx + p2My

2M
=

(p1 − p2x)
2 + p2

2y

2M
.

(b) Find Q = Ki −Kf , the total kinetic energy before the collision minus the total kinetic
energy after the collision. Show that this is of the form

Q = A
(

Bp21 − (p2x − Cp1)
2 − p22y

)

and give expressions for A, B and C.
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Solution: (3 marks)

Q = Ki −Kf

=
p2
1

2m
−

p2
2x

2m
−

p2
2y

2m
−

p2
1

2M
−

p2
2x

2M
+

2p1p2x
2M

−
p2
2y

2M

=
M +m

2Mm

(

−p22x +
M −m

M +m
p21 +

2mp1p2x
M +m

− p22y

)

=
M +m

2Mm

(

M −m

M +m
p21 −

(

p2x −
mp1

M +m

)2

+
m2

(M +m)2
p21 − p22y

)

=
M +m

2Mm

(

(

M

M +m

)2

p21 −
(

p2x −
mp1

M +m

)2

− p22y

)

Therefore

A =
M +m

2Mm
, B =

(

M

M +m

)2

, C =
m

M +m
.

(c) What is the condition on Q for an elastic collision?

Solution: (1 mark) Since kinetic energy is conserved in an elastic collision, Q = 0.

(d) Let p1 take the fixed value p1 = p0. Sketch a graph of p2x against p2y for an elastic
collision in which M > m. Label all intercepts.

Solution: (3 marks)

p0 -
M-m
m+M

p0
M-m
m+M

p2 y

p0

m p0

m+M

p0 Hm-ML

m+M

p2x

(e) What is the condition on Q for an inelastic collision?

Solution: (1 mark) Since kinetic energy is not conserved in an elastic collision, but the
total kinetic energy cannot increase as energy is conserved, Q > 0.

(f) For p1 = p0 mark on your sketch for part 11d the possible values of p2 for an inelastic
collision.

Solution: (1 mark) The shaded region in part 11d.
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Marker’s comments:

• Many students used incorrect expressions for the kinetic energy K = mv2/2.

• Moving in the x-y plane does not mean both objects move in the direction x = y, it
means that they do not move in the z direction.

• In parts (a) and (b) some students incorrectly assumed that the collision was elastic.

• Many students did not treat momentum correctly as a vector.
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Question 12 Suggested time: 30 minutes
Charlotte and Ben have lots of old 100 W incandescent light bulbs that they don’t like to see
going to waste, but they also don’t like to waste electricity so they want to find out how to run
them most efficiently. They decide to compare the efficiencies of running a bulb at different
input powers by comparing what they call the output ratio. Their definition of the output ratio
is the ratio of the intensity of visible light at some fixed distance from the bulb to the electric
power dissipated in the bulb.

To measure the visible light intensity they borrow a visible light meter a friend found in a
collection of old photographic gear. This meter produces a voltage between its two output
terminals that depends on the intensity of visible light incident on the detector. Its instruction
booklet is long lost but a previous owner left brief hand-written instructions and the following
graph.
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After doing some research Charlotte finds that the intensity of light passing through two
polarising filters is given by I = I0 cos

2 θ, where I0 is the intensity that passes through the filters
when they are aligned and θ is the angle between the polarisation axes of the two filters. To
make best use of the graph they decide to set up the visible light meter at a distance from the
bulb such that at maximum power the light meter voltage reading Vl is just below the
maximum given in the graph.

As the bulbs run on dangerous mains voltages, Ben asks his grandfather, a qualified electrician,
for some help with adjusting the power of the bulb. Ben’s grandfather provides them with a
large variable transformer that plugs into the wall at one end and has a mains socket on the
other, so that they can use a regular lamp to hold the bulb. To measure the power, he finds a
plug-in power meter that can be connected between a mains plug and a mains socket and
measures the power consumed by whatever is plugged into it.

Ben connects the power meter to the wall, plugs in the transformer and then plugs the lamp
into the transformer output. Ben’s grandfather checks it for electrical safety and then turns on
the wall switch.
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They choose a single bulb to use for all of their measurements. They don’t have to worry about
damaging it as the maximum output voltage of the transformer is the mains voltage, on which
the bulb is designed to run.

Unfortunately, it is a sunny day and the voltage across the light meter is non-zero even when
the bulb is off. Ben thinks that if he measures the voltage with the bulb off, he will be able to
subtract this from his later measurements to find the voltage he would read if there were no
sun. He does this and records 73 mV. He then takes the measurements, with the bulb on, that
appear in the table below. Charlotte thinks that it would be better to close the blinds and make
the room as dark as possible. She does this and takes her measurements. The following tables
contain Ben’s and Charlotte’s data.

Ben
Pbulb (W) Vl (mV)

9 87

20 102

42 139

62 166

79 198

100 248

Charlotte
Pbulb (W) Vl (mV)

10 55

21 88

40 124

61 163

78 192

100 235

(a) Whose method would you use and why?

Solution: (2 marks) Charlotte’s method is better. Although both attempt to account for
the background light, Ben’s method requires that the voltage output be directly
proportional to the intensity, which it is not. Charlotte’s method reduces the amount of
stray light directly and will improve the experiment.

(b) Using the data acquired by the person with the better method, calculate the output ratio
for each data point. The intensities you use to calculate the output ratio should be in
units of I0, i.e. express them as some number times I0, and then just treat the I0 as a unit.

Solution: (5 marks) Charlotte’s data:

P(W) V (mV) θ Intensity Output ratio(I0W
−1)

10 55 84 0.011I0 0.0011

21 88 77 0.051I0 0.0024

40 124 68 0.14I0 0.0035

61 163 56 0.31I0 0.0052

78 192 44 0.52I0 0.0066

100 235 14 0.94I0 0.0094

The required output ratios are the numbers in the final column.

(c) Given the values of the output ratio you calculated, at what power should they run their
bulbs?

Solution: (2 marks) Since the highest output ratio occurs at 100 W, they should run
their bulbs at 100 W for maximum efficiency.
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(d) Briefly suggest things that Charlotte and Ben could have done with the equipment they
had to improve their results.

Solution: (3 marks) There are many possible modifications to the method, and marks
were awarded here based on demonstrated thought. Simply saying ’repeat the
experiment’, for example, did not score highly if it was not clear why this would help.
Some ideas (but by no means all) worth something are:

• Take multiple measurements of each point to reduce the uncertainty

• Test more than one lamp and compare optimal power to identify whether all lamps
were the same

• Place the power meter between transformer and lamp to eliminate the transformer
losses from the measured power

• Choose a distance such that the light meter response is not flat, i.e. use a section of
the calibration curve that varies more to improve precision

Marker’s comments:

• This question was generally well done.

• Students needed to use the information provided.

• Students needed to take care to read points from the graph accurately.

• Some students needed to read the question more carfeully, e. g. part (d) asks about
improvements using the equipment that they had, not about improvements possible with
new equipment.
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Question 13 Suggested time: 20 minutes

(a) The Earth’s climate varies considerably between the hot equator and the cold poles.
Explain this fact with reference to the diagram below of the Earth and Sun at an equinox.

Sun

axis of rotation

equator

Earth

N pole

S pole

Solution: (2 marks)

Sun

Earth

Axis of rotation

Electromagnetic radiation is emitted uniformly in all directions from the Sun. This is the
source of energy which heats the Earth. There is a greater flux of radiation onto the
Earth at the equator than at the poles as the surface of the Earth is perpendicular to the
direction of propagation of the radiation there.

equal areas

Hence the Earth is hotter at the equator than at the poles.

Page 13 c© Australian Science Innovations 2010 ABN 81731558309



Australian Science Olympiads 2010 Physics National Qualifying Examination

(b) The Earth is surrounded by an atmosphere that is thin compared to its radius but still
many kilometres thick, so air can flow up or down as well as across the surface of the
Earth. The air high in the atmosphere at the poles is cool but warmer than than the air
just above the surface which is cooled by the cold land and sea below. Similarly at the
equator the air high in the atmosphere is warm but cooler than the air just above the
surface which is heated by the hot land and sea below.

Sketch a diagram of the large scale flows of air in the atmosphere that result. Explain
your answer.

Solution: (4 marks)

Earth

Cool

Warm

Cool

Warm
Hot

Cold

Hot

Cold

N

S

At the equator, the surface of the Earth will heat the air just above it. As the air is
heated, its density decreases, so it will rise. The rising air will decrease the pressure at the
surface and cause air to be drawn along the surface from the poles to the equator.

The air which rises at the equator must flow away from the equator to the poles in the
upper level of the atmosphere as it cannot build up in one place.

The convection cells formed close with air flowing down from the upper level of the
atmosphere at the poles, cooling as it does.
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(c) So far the effect of the rotation of the Earth has been neglected. It can be included by
considering the Coriolis force which appears to act on all bodies in rotating frames of
reference such as the Earth.

The magnitude of the component of the Coriolis force directed along the surface of the
Earth is F = mΩv sin θ where m is the mass of the body experiencing the force, Ω is the
Earth’s rotational velocity, v is the speed of the body and θ is the latitude (0◦ at the
equator and 90◦ at the poles) of the body. The Coriolis force is always directed
perpendicular to the velocity of the body and is directed towards the east for bodies
heading towards the poles in both hemispheres.

Since we live on the surface of the Earth the winds we feel are the large scale flows of air
in the lowest level of the atmosphere, and only those across the surface of the Earth.

Given your answer to part 13b, and including the Coriolis force, sketch the large scale
winds across the Earth’s surface. Explain your answer.

Solution: (4 marks) F = mΩv sin θ. θ = 0◦ at the equator, and 90◦ at the poles.

So the surface component of the Coriolis force is zero at the equator and maximum at the
poles.

Since the magnitude of the force doesn’t depend on the direction of the velocity, and it is
directed east for a poleward velocity, it must cause the air to circulate clockwise in the
northern hemisphere and anticlockwise in the southern hemisphere.

W E

(d) Sailors describe a region right near the equator, called the doldrums, in which there are
often long periods with no wind. Is this consistent with the above model? Explain.

Solution: (1 mark) Yes, it is consistent, as right near the equator air flows up rather
than across the surface. This region therefore has little to no surface wind.

(e) Just to the north and south of the doldrums are regions with very reliable winds called
the trade winds. Using the model, predict the directions of the trade winds in the
northern and southern hemispheres.

Solution: (1 mark) The trade winds are easterlies (blowing East to West) in both
hemispheres. See diagram for part 13c.
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Marker’s comments:

• The equatorial regions of the Earth are closer to the Sun than the poles, however this
does not cause a significant temperature difference.

• The atmosphere is a part of the Earth which cannot be neglected when considering it’s
climate.

• The convection cells described in the solution to part (b) are not driven by the
temperature gradient at the poles. They require heating from below so that the heated,
less dense air, rises. Cooling from below doesn’t cause the air high in the atmosphere to
sink.

• Part (c) was generally very poorly answered. One common error was to think that the
force was proportional to the velocity rather than the acceleration. Also, very few
students thought about the direction of the force.

• Part (d) was frequently misread.

• Part (e) was well done by those who answered it. However, some students gave the
direction of the winds in the upper atmosphere rather than those on the surface.
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Question 14 Suggested time: 40 minutes
A rare waist–necked giraffe has a mild gastric upset, and it is necessary that it be treated with
some giant medicine balls. The balls are spherical lozenges, and work best when they are big.

The giraffe’s insides are at temperature TG and the surrounding air is at temperature TA. As
the lozenge changes temperature as it slides down the giraffe’s long, beamy neck, it will expand.
The volume V of the lozenge at some temperature T is related to its volume VA at TA by

V = VA(1 + β(T − TA)) ,

where β > 0 is a constant.

The temperature does not change linearly down the giraffe’s neck, but accurate measurements
have been taken many times and it is known that the temperature varies with position h from
the giraffe’s body as

T = TG − (TG − TA)
h2

N2
.

(a) Show that the diameter of the ball at some height h away from the giraffe’s body is given
by

d = dA[1 + γ(N2 − h2)]1/3 ,

where dA is the initial diameter in the air and N is the length of the neck, and find the
constant γ.

Solution: (1 mark) We have

V = VA(1 + β(T − TA))

and

T = TG − (TG − TA)
h2

N2
.

Substituting the second equation into the first gives

V = VA

[

1 + β

(

TG − TA − (TG − TA)
h2

N2

)]

= VA

[

1 + β(TG − TA)

(

1−
h2

N2

)]

= VA

[

1 +
β(TG − TA)

N2
(N2 − h2)

]

.

Now, V = 4πr3/3 = πd3/6, so

1

6
πd3 =

1

6
πd3A

[

1 +
β(TG − TA)

N2
(N2 − h2)

]

d = dA

[

1 +
β(TG − TA)

N2
(N2 − h2)

]1/3

.

This is in the required form, with γ = β(TG − TA)/N
2.

It is physically reasonable to assume that γ is a small quantity. The binomial approximation
states that for small nx, (1 + x)n ≃ 1 + nx.
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(b) Write down the approximate expression for d.

Solution: (1 mark) Assuming that

β(TG − TA)

3N2
(N2 − h2)

is small, we get

[

1 +
β(TG − TA)

N2
(N2 − h2)

]1/3

≈ 1 +
β(TG − TA)

3N2
(N2 − h2)

so

d ≈ dA

[

1 +
β(TG − TA)

3N2
(N2 − h2)

]

= dA

[

1 +
γ

3
(N2 − h2)

]

.

The width of the neck of a waist–necked giraffe is given by

w = M + ζ

(

h−
N

2

)2

,

where M is the minimum width of the neck (at the ‘waist’), and h as before is the height away
from the giraffe’s body, so that h = N is at the very top of the neck. ζ > 0 is a constant.

It is of paramount importance not to choke the waist–necked giraffe with the medicinal
lozenges, as this would do more harm than good, and retrieving a stuck lozenge is not anyone’s
idea of a fun way to spend an afternoon. You may assume that the difference between the
lozenge’s width at the top of the neck dA differs from the width at the neck-waist M only by a
very small amount χ.

(c) Write down the condition for the lozenge not to get stuck in the giraffe’s neck. Replace dA
with M − χ, and since γ and χ are small you may neglect terms that contain a product of
these two. Express your condition as an inequality with 0 on one side.

Solution: (2 marks) We have

w = M + ζ

(

h−
N

2

)2

and
dA = M − χ.

We want d < w at all times, lest the giraffe choke.

Substituting our expressions for each of these, we want

(M − χ)
[

1 +
γ

3
(N2 − h2)

]

< M + ζ

(

h−
N

2

)2

M +
Mγ

3
(N2 − h2)− χ−

χγ

3
(N2 − h2)−M − ζ

(

h−
N

2

)2

< 0

Mγ

3
(N2 − h2)− χ− ζ

(

h−
N

2

)2

< 0.
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(d) In order that the lozenge not get stuck, the inequality you wrote must hold for all h
between N and 0. If you solve the equation produced by making your inequality into an
equality, you may or may not find a solution for h in that range. Explain why if there is
not a solution for h somewhere in the neck, the lozenge will not get stuck.

Solution: (1.5 marks) The lozenge is not stuck initially, as dA < M . For the lozenge to
get stuck, its diameter must at some point be equal to that of the giraffe’s neck, as it
cannot attain a greater diameter without at some point having an equal diameter. Taking
the above inequality and solving it as an equality would yield solutions for points where
the diameter of the lozenge is equal to the diameter of the giraffe’s neck. If there were no
solutions, there would be no points where the diameters were equal, and hence the lozenge
would not stick.

(e) Find the maximum size of the lozenge such that it is guaranteed not to get stuck by that
criterion.

Solution: (4 marks) The equation

δ(h) = −
Mγ

3
(N2 − h2) + χ+ ζ

(

h−
N

2

)2

describes the amount by which the diameters of throat and lozenge differ as a function of
h. We want to find the value of χ such that the parabola described by δ(h) has exactly
one root (i.e. takes the value of zero exactly once, and is never negative). We will call this
value χcrit, and this corresponds to the minimum value of χ (and hence the maximum
value of dA) that the lozenge can take – any greater and it will stick.

Rewriting δ(h) in canonical form, we get

δ(h) =

(

Mγ

3
+ ζ

)

h2 − ζNh+

(

−
MγN2

3
+ χ+

ζN2

4

)

Taking this as δ(h) = ah2 + bh+ c, we recall that a parabola has exactly one root when
b2 − 4ac = 0. Hence our condition gives that

ζ2N2 − 4

(

Mγ

3
+ ζ

)(

−
MγN2

3
+ χcrit +

ζN2

4

)

= 0

ζ2N2 − 4N2

(

Mγ

3
+ ζ

)(

ζ

4
−

Mγ

3

)

= 4

(

Mγ

3
+ ζ

)

χcrit

χcrit =
3ζ2N2

4Mγ + 12ζ
−N2

(

ζ

4
−

Mγ

3

)

so

dA,max = M − χcrit = M −
3ζ2N2

4Mγ + 12ζ
+N2

(

ζ

4
−

Mγ

3

)

.
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(f) Check your solution for the limiting cases of ζ → 0 and ζ → ∞. Do your values make
sense in these limits (they should)? Explain why or why not.

Solution: (4.5 marks) When ζ → 0, the giraffe’s neck has constant width M . The lozenge
attains its maximum diameter at the base of the giraffe’s neck (h = 0), and this size is

dmax = dA

[

1 +
γN2

3

]

.

Taking our above expression for dA,max, we get in the limit as ζ → 0,

dA,max → M

[

1−
γN2

3

]

so we have

dmax → M

[

1−
γN2

3

] [

1 + γ
N2

3

]

= M

[

1−
γ2N4

9

]

≈ M

where we make this last approximation by recalling our earlier assumption that

β(TG − TA)

3N2
(N2 − h2) =

γ(N2 − h2)

3

was small for all values of h. Hence we have that our result is sensible in the limit as
ζ → 0, as we get that the lozenge only just passes through without sticking.

When ζ → ∞, the giraffe’s neck is very wide at every point except at h = N/2, where it
has width M . At this height, the lozenge has diameter

dN/2 = dA

[

1 +
γ

3

3N2

4

]

= dA

[

1 +
γN2

4

]

.

In the limit as ζ → ∞, we have

dA,max → M −
3N2ζ

12

(

1 +
4Mγ

12ζ

)

−1

+
N2ζ

4
−

N2Mγ

3

≈ M −
N2ζ

4

(

1−
Mγ

3ζ

)

+
N2ζ

4
−

N2Mγ

3

= M

(

1−
γN2

4

)

Thus the lozenge’s width at the narrow point of the neck goes to

dN/2 → M

[

1−
γN2

4

] [

1 +
γN2

4

]

= M

[

1−
γ2N4

16

]

≈ M

by the same approximation as we made earlier. Thus the result is sensible in this limit
also, as the lozenge only just makes it through.
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Marker’s comments:

• Many students made transcription errors that moved subscripts into multiplicative factors
or vice versa, e.g. dA = dA.

• Students also often forgot to close parantheses and thereby introduced errors.
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