
Individual Finals B

1. Let q be a fixed odd prime. A prime p is said to be orange if for every integer a there exists
an integer r such that rq ≡ a (mod p). Prove that there are infinitely many orange primes.

Solution:

We claim that a prime p is orange whenever p 6≡ 1 (mod q). Indeed, for such p, we know that
(p − 1, q) = 1, so there exist m,n ∈ Z such that (p − 1)m + qn = 1. Thus, for every integer
a 6≡ 0 (mod p), we have a = a(p−1)m+qn =

(
ap−1

)m · (an)
q ≡ (an)

q
(mod p) (where the last

step follows by Fermat’s little theorem), so r = an works. For a ≡ 0 (mod p), we may take
r = 0.

It remains to show that there are infinitely many primes p 6≡ 1 (mod q). Assume on the
contrary that there are only finitely many such primes, and let these primes be p1, p2, . . . , pk.
Let N = qp1p2 · · · pk − 1. Then N is not divisible by any pj , so all prime factors of N must be
congruent to 1 (mod q), contradicting the fact that N ≡ −1 (mod q).

�

2. Let O1, O2, . . . , O2012 be 2012 circles in the plane such that no circle intersects or contains any
other circle and no two circles have the same radius. For each 1 ≤ i < j ≤ 2012, let Pi,j denote
the point of intersection of the two external tangent lines to Oi and Oj , and let T be the set of
all Pi,j (so |T | =

(
2012
2

)
= 2023066). Suppose there exists a subset S ⊂ T with |S| = 2021056

such that all points in S lie on the same line. Prove that all points in T lie on the same line.

Solution:

For each Oi, let Si be the sphere which has Oi as a great circle. Then Pi,j is the apex of the
cone tangent to Si and Sj . As all three of these apexes must lie in both of the planes which
are externally tangent to the three spheres, they must lie along the line in which these two
planes intersect, so they must be collinear.

Once we have this result, the problem reduces to a graph theory question. Let l be the line
containing the points of S, and let G be a simple graph with vertices v1, v2, . . . , v2012 such
that, for each 1 ≤ i < j ≤ 2012, vi is adjacent to vj if and only if Pi,j lies on l. From the
problem statement, we are given that |E(G)| ≥ 2021056. Also, our lemma says that for any
three vertices a, b, c, if a is adjacent to b and b is adjacent to c, then a is adjacent to c.

We first claim that G is connected. Suppose for the sake of contradiction that it is not. Then
there exists some 1 ≤ k ≤ 2011 such that V (G) can be partitioned into two sets of sizes k
and 2012− k with no edges going between them. This implies that |E(G)| ≤

(
k
2

)
+
(
2012−k

2

)
=

k(k−1)+(2012−k)(2011−k)
2 = k2−2012k+2023066. As this is a convex function of k, it achieves its

maximum at one of the endpoints of the interval, so |E(G)| ≤ 12 − 2012 + 2023066 = 2021055
(it takes the same value for k = 2011). This contradicts |E(G)| ≥ 2021056, so we conclude
that G is connected.

We now claim that G is complete. Since G is connected, for any two vertices a and b there
exists a path from a to b, say au0u1 . . . unb. Repeated application of the lemma gives that a
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is adjacent to u1, u2, . . . , un, and finally to b. We conclude that every pair of vertices of G is
adjacent, which gives the desired result.

�

3. Find, with proof, all pairs (x, y) of integers satisfying the equation 3x2 + 4 = 2y3.

Solution:

This equation can be rewritten as (2 + x)3 + (2 − x)3 = (2y)3. By Fermat’s last theorem, at
least one of 2 + x, 2 − x, and y must be zero. The first case gives the solution (−2, 2), the
second case gives the solution (2, 2), and the third case gives no solutions.

Here is some motivation for this solution. We first note that x must be even, so let x = 2k
(for some k ∈ Z). Plugging this in and simplifying the equation gives us 6k2 + 2 = y3. Thus y
must be even as well, and letting y = 2l gives 3k2 + 1 = 4l3. Now we see that k must be odd,
so letting k = 2m + 1 gives 3m2 + 3m + 1 = l3. The left-hand side is easily recognizable as
(m + 1)3 −m3, so we may rewrite this equation as (m + 1)3 = l3 + m3. Thus either m = −1,
m = 0, or l = 0, and by considering these three cases we obtain the same two solutions.
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