
Combinatorics B Solutions

Written by Andy Zhu

1. By linearity of expectation, the answer is 2× 3+3+4+4+5+6+7+8
8 = 10 .

2. There are 8 even numbers and 7 odd numbers from 16 to 30. For the sum of three integers to
be even, either all three must be even, or two must be odd and the last must be even. There
are

(
8
3

)
= 7 · 8 ways to choose the three even numbers, and 8 ·

(
7
2

)
= 7 · 24 ways to choose the

one even and two odd integers. In total, there are
(
15
3

)
= 7 · 65 ways to choose three distinct

numbers from 15 numbers. Thus, the probability that the sum is even is 7·8+7·24
7·65 = 32

65 , and

the answer is m + n = 97 .

3. We can do this by casework. Notice that there is exactly one fixed element between consecutive
permutations, and there are exactly two permutations for each fixed digit as a fixed element.
Without loss of generality, suppose the first permutation is given by (123) (six possibilities), and
that the second permutation fixes the third element, and so must be (213) (three possibilities).
Without loss of generality again, one may assume that the third permutation fixes the second
element (between the first and second elements), and so must be (312) (two possibilities). For
the fourth permutation, there are two distinct cases: either the first or third elements are fixed.

• In the former case, one gets the permutation (213). The two permutations left are (231)
and (321) and must occur in that order.

• In the latter case, one gets the permutation (321). The two permutations left are (231)
and (213) and must occur in that order.

Hence, there are 6× 3× 2× (1 + 1) = 72 possible orderings of these permutations.

An equivalent restatement of the problem is to count the number of Hamiltonian paths of the
complete bipartite graph K3,3 (each bipartition corresponding to a copy of A3 ≤ S3), which is

readily seen to be 6× 3× 2× 2 = 72 .

Problem contributed by Luke Paulsen.

4. For each value of |S| between 1 and N − 2, the subset S consists of |S| of the integers in

{1, 2, . . . , |S|+ 2}. Thus, there are
(|S|+2
|S|
)

possible subsets. Hence the answer is, with N = 10,

N + 1 +
N−2∑
i=1

(
i + 2

2

)
= N +

(
N + 1

3

)
= 175 ,

where we applied the hockey-stick identity.

The hockey-stick identity comes with a combinatorial interpretation: instead we can think
about choosing 3 distinct integers from {1, 2, . . . , N + 1}: the value of |S| + 3 and the two
numbers in {1, 2, . . . , |S|+ 2} to exclude from S.
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5. Note that there is some symmetry: the probability of rolling a 9 is the same for both two rolls
of the first die and two rolls of the second dice (consider the correspondence of a face f of the
first die with that of a face 9− f on the second die), and is given by 4/36 = 1/9 by listing the
possible face combinations. If the first and second dice are rolled, the probability of rolling 9
is 6/36 = 1/6. By conditional probability, the answer is

P (same dice | rolled 9) =
P (rolled 9 | same dice)

P (rolled 9)
=

1/9
1
2 · (1/9) + 1

2 · (1/6)
=

2

5
,

so the answer is 2 + 5 = 7 .

6. Consider the general case for Pi = (xi, yi) ∈ Z2
N , where here N = 7. For each value of M with

0 ≤ M ≤ N , there are
(
N
M

)
ways to pick each of the x- and y-coordinates of the M points,

since the M x- and y-coordinates are distinct integers between 0 and N , inclusive. Hence, the
answer is

N∑
M=0

(
N

M

)2

=

(
2N

N

)
=

(
14

7

)
= 3432

by Vandermonde’s identity. Alternatively, consider the following bijection to the number of
paths from (0,−1) to (N,N − 1) travelling only up or right at lattice points: keep travelling
right until you reach one of the values of xi, at which point you move up to Pi and keep
moving right. Conversely, each such path corresponds to the set of points where an ‘up’ step
transitions to a ‘right’ step.

7. Call the last person at the beginning A. If A is at ith position, for the next round, there is
i−1
5 chance that the first person remains in front of A, which means the position of A remains

the same. Otherwise, A’s position advances by 1. Hence the expected number of rounds for A
to move the position by 1 is

+∞∑
k=1

(
i− 1

5

)k−1(
1− i− 1

5

)
k =

+∞∑
k=0

(
i− 1

5

)k

(k + 1)−
+∞∑
k=0

(
i− 1

5

)k

k

=

+∞∑
k=0

(
i− 1

5

)k

=
1

1− i−1
5

=
5

5− i + 1

(Note that this is the expectation of a geometric distribution with parameter p = 5−i+1
5 .) So

in order to move A to the front, the total expected number of rounds needed is

5∑
i=2

5

5− i + 1
=

5

1
+

5

2
+

5

3
+

5

4
=

125

12
,

so the answer is 125 + 12 = 137 .

Problem contributed by Xufan Zhang.

8. Equivalently, consider a Hamiltonian walk on the squares of a cylindrical 3 × 40 chessboard
(wrapped so that the two long sides overlap). Let An denote the number of ways to start at the
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top left corner (1, 3) of such a 3× n cylindrically-wrapped chessboard and end in the bottom
right corner (n, 1), and let Bn denote the number of ways to start at the top left corner (1, 3)
and end in the top right corner (n, 3). Then the question is asking for the value of B40. The
key is the two recurrence relations

An = 1 +
n−1∑
i=0

Ai + Bi, Bn = 2
n−1∑
i=0

Ai (*)

This comes from the observation that for any path starting on the left side and ending on the
right side, if there were k horizontal steps before reaching the destination point on the right
side, then the previous 2k + 1 moves before those are also fixed upto two possibilities:

· · · · · ·

This holds true for each value of k from 0 to n− 2. Note that that the number of paths from
column 1 to column n is then reduced to counting the number of paths from column 1 to
column n − k − 1, upto a change in the row. The one exception is when k = n − 1, in which
case we end up with a valid path of the entire 3× n board if the destination is not in the first
row (hence the +1 in (∗)). When we keep track of the row change, we obtain the recursions in
(∗) - recall the cylindrical nature of the chessboard means that there is symmetry in the cases
of the bottom two rows.

It thus suffices to solve (∗). Notice that

An+1 −An = An + Bn, Bn+1 −Bn = 2An.

Substituting the first equation into the second one gives

(An+2 − 2An+1)− (An+1 − 2An) = 2An =⇒ An+2 = 3An+1.

Hence, for all n > 1, one has the explicit formula An = 3n−2A2. With a bit of casework and
visualization, we indeed see that A1 = 1, A2 = 2, A3 = 6, · · · , so An = 2 · 3n−2 for all n > 1.
Thus, the desired answer is the value of A40 = 2·338 (mod 100). Since ϕ(100) = 1

2 · 45 ·100 = 40,
Euler’s totient theorem shows that 340 ≡ 1 (mod 100). Also, we note that 1 ≡ 201 ≡ 3 · 67
(mod 100), so

A40 = 2 · 338 ≡ 2 ·
(
3−1
)2 ≡ 2 · 672 ≡ 8978 ≡ 78 (mod 100).
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