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Why are numbers beautiful? It’s like asking why is
Beethoven’s Ninth Symphony beautiful. If you don’t
see why, someone can’t tell you. I know numbers are
beautiful. If they aren’t beautiful, nothing is.

Paul Erdös

Our problems and their solutions are heavily based on Sections 1.1-1.2 of
Martin Klazar’s informal online notes on number theory, [1]. The concept for
this Power Round was to present an elementary proof of Thue’s theorem on
Diophantine approximation. The maximum score possible was 110 points.

2 Background (22 points)
2.1 (4 points)
Let f, g ∈ C[X] such that f 6= 0, and let α, β ∈ C.

(1) Show that
|f(α)| ≤ (1 + deg f)‖f‖ ·max(1, |α|)deg f

(1) Show that ‖αf + βg‖ ≤ |α|‖f‖+ |β|‖g‖. where the notation f + g is the
sum of the polynomials f and g.

(2) Prove ‖fg‖ ≤ (1 + deg f)‖f‖‖g‖, where fg is the product of polynomials
f and g.

Solution. Let f(X) = a0 + a1X + . . .+ amX
m, g(X) = b0 + b1X + . . .+ bnX

n.

1. |f(α) ≤
∑m
j=0 |aj ||α|j ≤ ‖f‖

∑m
j=0 |α|j ≤ ‖f‖(1 +m) max(1, |α|)m.
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2. ‖αf + βg‖ = maxj |αaj + βbj |, where |αaj + βbj | ≤ |α||aj | + |β||bj | ≤
|α|‖f‖+ |β|‖g‖.

3. The coefficient of Xk in fg is
∑
i+j=k aibj , a sum of ≤ m+ 1 terms, each

of which is ≤ ‖f‖‖g‖.

2.2 (3 points)
Suppose f(X) = (X −α)rg(X), where α ∈ C is nonzero, r ∈ Z+, and g ∈ C[X]
is nonzero. Prove that

‖g‖ < (1 + deg g)(2 max(1, |α|−1))deg f‖f‖

Solution. Letm = deg f and n = deg g as before. By geometric series expansion,

1
(X − α)r = 1

(−α)r
1

(1−X/α)r = (−α)−r
∞∑
j=0

(
j + r − 1

j

)
(X/α)j

Then ‖g‖ ≤ ‖(−α)r
∑n
j=0 2n+r(X/α)j‖‖f‖, after using the strict inequality(

j+r−1
j

)
< 2n+r. Apply part 3 from Problem 2.1, where we know m = n+r.

2.3 (5 points)
(3) Let f, g ∈ Q[X] such that g 6= 0. Prove that there exist q, r ∈ Q[X] such

that
f(X) = q(X)g(X) + r(X)

and either r = 0 or deg r < deg g. If r = 0, then we say g divides f .

(2) Why does the same statement hold with f, g, q, r ∈ C[X]? Deduce that
α is a root of f ∈ C[X] if and only if f(X) = (X − α)q(X) for some
q ∈ C[X].

Solution. As is standard, we abbreviate f = f(X), etc.
1. If f = 0, then we pick q = r = 0. Suppose that f 6= 0. Consider the set of

polynomials
S = {p = f − qg : q ∈ Q[X]}

If 0 ∈ S, then we are done, so suppose S contains only nonzero elements.
We know S is nonempty because it contains p = f . Let r = f − qg be of
minimal degree in S. If s = deg r − deg g ≥ 0, then we can subtract off
a constant multiple of Xsg(X) from r to produce another element of S
of degree strictly lower than r, contradicting minimality of r. Therefore,
deg r < deg g as needed.

2. Part 1 holds for C[X] because the trick of scaling Xsg(X) to cancel the
leading term of r still works there. For the second part of the problem,
put g(X) = X − α in part 1.
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2.4 (6 points)
Let f(X) = a0 + a1X + . . .+ adX

d. For all 0 ≤ k ≤ d, let

Dkf =
d∑
j=0

(
j

k

)
ajX

j−k

where (
j

k

)
= j!
k!(j − k)!

for 0 ≤ k ≤ j, and equals 0 otherwise.
We abbreviate by writing Df = D1f .

(2) Show that ‖Dkf‖ ≤ 2d‖f‖ for all 0 ≤ k ≤ deg f .

(1) Show that k!Dk(f) = D
(k)
1 (f), where D(k)

1 denotes the composition of D1
with itself k times.

(3) Show that if D0(f)(α) = D1(f)(α) = ... = Dk−1(f)(α) = 0, then f has a
root of multiplicity at least k at α.

Solution.
(
j
k

)
≤ 2j , whence ‖Dkf‖ ≤ 2d‖

∑d
j=k ajX

j−k‖ ≤ 2d‖f‖. TO DO:
Solutions to parts 2 AND 3.

2.5 (4 points)
Suppose f, g ∈ C[X] are nonzero such that

fDg = gDf

(1) Show that deg f = deg g.

(3) Show that f, g differ by a constant multiple.

Solution. Let m = deg f and n = deg g. Using the Fundamental Theorem of
Algebra, f = A(x − a1) . . . (x − am) and g = B(x − b1) . . . (x − bn), for some
coefficients A,B, ai, bj ∈ C.

1. Expand fDg and gDf separately. The leading coefficients are mAB and
nBA, respectively, where AB 6= 0, so m = n.

2. It is possible to solve this problem by bashing out the computations. We
give a rather slicker proof: First show D(f1f2) = f1Df2 + f2Df1 for all
f1, f2 ∈ C[X], by writing out both sides. Then

D(f1f2)
f1f2

= Df1

f1
+ Df2

f2
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Since (Df)/f = (Dg)/g and DA = DB = 0, we apply the above lemma
to the linear factors of f and g to obtain

1
X − a1

+ . . .+ 1
X − am

= 1
X − b1

+ . . .+ 1
X − bn

Since m = n, it suffices to prove that the aj and bj are the same up to
ordering. We know {aj} and {bj} are at least the same set of numbers,
because both sides must blow up in absolute value when X gets very
close to a root on one side. To show that the roots occur with the same
multiplicity on both sides, cancel out all common linear factors from f
and g to obtain new polynomials f0 and g0, respectively, which do not
share any linear factors. Repeating the above argument for f0, g0 shows
f0 = g0 = 1, as needed.

3 Algebraic Numbers (32 points)
3.1 (7 points)
Let α ∈ Q.

(1) Show that if a, b ∈ Q with a 6= 0, then β = aα + b is algebraic and
deg β = degα.

(1) Show there exists a ∈ Z+ such that aα is an algebraic integer.

(1) Suppose α is an algebraic integer. Show that if b ∈ Z, then α + b is an
algebraic integer.

(4) Suppose α is an algebraic integer, such that f(α) = 0 for some monic
polynomial f ∈ Z[X] of degree d. Let r ∈ Z be nonnegative. Prove that
we can write

αr =
d−1∑
j=0

ar,jα
j

for some ar,j ∈ Z with |ar,j | ≤ (1 + ‖f‖)r.

Solution. By definition, α is the root of some polynomial f(X) = a0 + a1X +
. . .+ adX

d ∈ Q[X].

1. β/a − b/a is a root of f . Expanding the polynomial in β shows β is
algebraic.

2. Let a be the common denominator of the aj . Then

(aα)n +
d−1∑
j=0

ad−jaj(aα)j = 0

where ad−jaj ∈ Z for all j, so aα is an algebraic integer.
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3. If α is an algebraic integer, then we can choose f so that it is monic with
coefficients in Z. Let β = α + b. Then β − b is a root of f , so expanding
the polynomial in β shows β is an algebraic integer.

4. (Following Klazar) Again, choose f to be monic with aj ∈ Z for all j. If
r = 0, then we put c0,0 = 1 and c0,j = 0 for all j > 0. Now induct on r to
prove that

αr = α(αr−1) =
d−1∑
j=0

(cr−1,j−1 − cr−1,d−1aj)αj

where cr−1,−1 = 0, using the substitution αd = −
∑d−1
j=0 ajα

j . So cr,j =
cr−1,j−1 − cr−1,d−1aj . By induction,

|cr,j | ≤ |cr−1,j−1|+ |cr−1,d−1||aj |‘(1 + max
j
|aj |)r

3.2 (7 points)
Let f ∈ Z[X].

(3) Suppose g ∈ Z[X]. Show that if the product fg is not simple, then at
least one of f or g is not simple.

(2) Suppose instead g ∈ Q[X]. Show that if f is simple and fg ∈ Z[X], then
g ∈ Z[X].

(2) Conclude that if a polynomial in Z[X] does not factor into two nonconstant
polyomials in Z[X], then it cannot factor into two nonconstant polynomi-
als in Q[X].

Solution. Let f(X) = a0 + a1X + . . .+ amX
m, g(X) = b0 + b1X + . . .+ bnX

n.

1. We show the contrapositive: Suppose f, g are simple. There exists a
prime number p such that p - aj , bk for some j, k. We can choose j and k
to be minimal. The coefficient of Xj+k in fg is ajbk +

∑j−1
i=0 aibj+k−i +∑k−1

i=0 aj+k−ibi. Here, p divides each of the sums but not ajbk, so the
whole expression is not divisible by p. So no prime p divides all of the
coefficients of fg, as needed.

2. Let b be the least common denominator of the rational coefficients bj in
lowest terms. Then bg(X) ∈ Z[X] is simple. From part 1, we deduce that
bfg is simple, but fg ∈ Z[X], whence b = 1. Therefore, g ∈ Z[X].

3. If f ∈ Z[X] factors into two nonconstant polynomials in Q[X], then let a
be the least common denominator of the coefficients in lowest terms of one
of them. By multiplying that polynomial through by a and dividing the
other by a, we obtain the situation in part 2, so that the new polynomials
must both belong to Z[X].
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3.3 (12 points)
Let α ∈ Q, and let f ∈ Q[X] be nonzero.

(2) Show that the roots of mα all have multiplicity 1, or in other words, that
they are pairwise distinct.

(2) Suppose f does not factor into two nonconstant polynomials in Q[X].
Show the roots of f are pairwise distinct algebraic numbers, each of degree
deg f .

(2) Suppose α is a root of multiplicity m of f . Prove deg f ≥ mdegα.

(3) Suppose p/q ∈ Q is in lowest terms, and is a root of multiplicity m of f .
Also, suppose f ∈ Z[X] and has leading coefficient a. Prove qm ≤ |a|.

(3) Show that if α is an algebraic integer, then mα ∈ Z[X].

Hint: See Problem 2.3! Also, on parts 4 and 5, use Problem 3.2.

Solution.

1. Via the identity D(fg) = fDg + gDf from Section 2, we can prove that
α remains a root of Dmα if and only if its multiplicity as a root of mα is
≥ 2. But degDmα < degmα, violating the minimality of mα.

2. If α is a root of f , then mα divides f , so deg f = degmα for all such α.
Therefore, the multiplicity of α as a root of f is the same as its multiplicity
as a root of mα, that is to say 1. Moreover, the degree of α is degmα by
definition.

3. Follows from part 2 of Problem 2.5 by induction on m.

4. qm(X − p/q)m = qmXm + . . . + (−p)m is simple, as gcd(p, q) = 1. Since
(X−p/q)m occurs in the factorization of f , we deduce that qm(X−p/q)m
divides f in Q[X], meaning there exists g ∈ Q[X] with

qm(X − p/q)mg(X) = f(X)

But by Problem 3.2, g ∈ Z[X]. Comparing leading coefficients, qm | a as
needed.

5. There exists monic f ∈ Z[X] with f(α) = 0, where we know mαg = f
for some g ∈ Q[X] by the remark after the definition of mα. There
exists nonzero a ∈ Z such that amα ∈ Z[X] and is simple. Then f =
(amα)(a−1g), whence a−1g ∈ Z[X] by part 2 of Problem 3.2. But f is
monic. So a = 1 and therefore mα ∈ Z[X].
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3.4 (6 points)
For all 1 ≤ i ≤ m, let

fi(X1, . . . , Xn) = ai,1X1 + . . .+ ai,nXn ∈ Z[X1, . . . , Xn]

where n > m and |ai,j | ≤ A for all i, j for some fixed A > 0. Prove that there
exist x1, . . . , xn ∈ Z, satisfying

f1(x1, . . . , xn) = . . . = fm(x1, . . . , xn) = 0

such that |xj | ≤ b(nA)m/(n−m)c for all j and xj 6= 0 for some j. We use the
notation bsc to denote the greatest integer not greater than s.

Hint: Use the Pigeonhole Principle. That is, if there are N pigeonholes and
M pigeons, where M > N , then at least one pigeonhole must get > 1 pigeon.

Solution. Let ai =
∑n
j=1 max(0, ai,j) and bi =

∑n
j=1 min(0, ai,j). For all integer

r ≥ 0, there are (r + 1)n n-tuples (x1, . . . , xn) in the n-dimensional “box”
{0, . . . , r}n. The m-tuple (f1, . . . , fm) is a function on this box, with values in
the m-dimensional box

B =
m∏
i=1
{bir, . . . , air}

(Above,
∏

is a shorthand notation for × . . .×, and the terms of the product
are again sets.)

Set r = b(nA)m/(n−m)c. Since n > m, we have (r + 1)n > ((r + 1)nA)m >
(rnA+ 1)m, whence

#B =
m∏
i=1

(rai − rbi + 1) ≤ (rnA+ 1)m < (r + 1)m

By the Pigeonhole Principle, two of our n-tuples are mapped to the same m-
tuple by (f1, . . . ,m). Their difference (x1, . . . , xn) is nonzero, meaning xi 6= 0
for some i, and is mapped to (0, . . . , 0), so that |xi| ≤ r for all i.

Note: Thanks to Kevin Li for pointing out that when all f ’s are zero, we
cannot both satisfy |xj | ≤ b(nA)m/(n−m)c for all j and xj 6= 0 for some j. This
problem may be fixed by either making A take on only integer values or making
at least one fi nonzero.

4 Main Results (56 points)
The problems in this section are very hard, so do not be discouraged if you get
stuck on some—or all!—of them. In what follows, let I = [−1/2,+1/2].
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4.1 (4 points)
Let 0 < ε < 1/2. Show that if, for all α which are algebraic integers in I of
degree d ≥ 3, ∣∣∣∣α− p

q

∣∣∣∣ < 1
q1+ε+d/2

has only finitely many solutions for the rational p/q in lowest terms, then, for
all α which are algebraic integers (not necessarily in I) of degree d ≥ 1, it also
has only finitely many solutions for the rational p/q in lowest terms.

Solution. Let us first show that the existence of only finitely many solutions for
p/q is equivalent to the existence of a constant c(α, ε) such that∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α, ε)
q1+d/2+ε

for all pq 6= α. This fact, which we will call Lemma 4.1, will be used both here
and in the solution to 4.5.

First we assume that there are finitely many solutions to∣∣∣∣α− p

q

∣∣∣∣ < 1/q1+δ+d/2

then clearly their exists a lower bound C such that∣∣∣∣α− p

q

∣∣∣∣ ≥ C

q1+δ+d/2

where C is min(ci) and each ci > 0 is chosen such that∣∣∣∣α− pi
qi

∣∣∣∣ ≥ ci

q
1+δ+d/2
i

. Finitely many ci implies positive minimum, so C is positive.

Conversely, if we start with the existence of C(α, δ) for all 0 < δ < ε such
that ∣∣∣∣α− p

q

∣∣∣∣ ≥ C(α, δ)
q1+δ+d/2

for all pq 6= α. Then when ∣∣∣∣α− p

q

∣∣∣∣ < 1
q1+ε+d/2

we have 0 < C(α, δ) < qδ−ε, which for δ < ε can only be true for finitely many
p
q . This proves our lemma.
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So equivalently, we have to produce a constant c(α, ε) depending only on α
and ε, such that ∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α, ε)
q1+d/2+ε

for all pq 6= α. If α /∈ R, we know that |α− p
q | ≥ Im(α) > 0 and for large enough

q we get a contradiction. Thus q is bounded, and for fixed q, the number of
choices for p are finite (by the inequality) and so we have finitely many solutions
in total. Thus we are reduced to α ∈ R. If d = 1, we have that α = a

b where
a, b are integers. For p

q 6= α, we see that∣∣∣∣α− p

q

∣∣∣∣ ≥ 1
qb
≥ 1
bq3/2+ε

and pick c(α, ε) = 1
b . For d = 2, we have α′ ∈ R, α′ 6= α such that P (x) =

x2 + ax+ b = (x− α)(x− α′) and a, b ∈ Z. For p
q ∈ Q, we have |P (pq )| ≥ 1

q2 . If
|α− p/q| < 1, we have∣∣∣∣α− p

q

∣∣∣∣ = P (p/q)
|α′ − p/q|

>
1

(1 + |α− α′|)q2

and picking c(α, ε) = min
(

1, 1
1 + |α− α′|

)
gives us the desired result. Finally

when α ∈ R and |α| > 1
2 , pick integer n such that n + α ∈ I and observe

that the finiteness of the set
{
p

q
: |(α+ n)− p

q
| < 1

q1+d/2+ε

}
is equivalent to

the finiteness of the set
{
p′

q
:= p− n

q
: |α− p′

q
| < 1

q1+d/2+ε

}
.

4.2 (8 points)
Let d,m, n ∈ Z+ such that d ≥ 3 and 1 < md

n+1 < 2, and let

λ = 1− md

2n+ 2

Let α be an algebraic integer in I of degree d. Show that there exist P (X), Q(X) ∈
Z[X] such that:

1. degP , degQ ≤ n.

2. ‖P‖, ‖Q‖ ≤ cn/λ1 , for some c1 > 1 depending only on α.

3. Dj(P + αQ)(α) = 0 for all 0 ≤ j < m.

4. P (X)/Q(X) is not constant in X.

Hint: Write down some linear equations and solve for the coefficients of P,Q
using Problem 3.4!
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Solution. We write P (x) =
∑n
i=0 aix

i and Q(x) =
∑n
i=0 bix

i and solve for the
2n+ 2 unknown coefficients in a way that satisfies the above criteria. The third
condition gives us that

n∑
i=0

(
i

j

)
(aiαi−j + biα

i−j+1) = 0

for 0 ≤ j < m where
(
i
j

)
:= 0 for j > i. By the last part of Question 3.1, we

have that
d−1∑
k=0

αk
n∑
i=j

(
i

j

)
(ci−j,kai + ci−j+1,kbi) = 0

for 0 ≤ j < m and cr,k < cr0 where c0 > 1 depends only on α. This is true if
and only if the coefficients of αk are zero for 0 ≤ k < d in each of the above m
equations and hence we get dm linear equations in the 2n + 2 unknowns ai, bi
with integer coefficients

(
i
j

)
cr,k which are bounded in absolute value by (2c0)n.

Since (2n + 2) > dm, by Question 3.4, we have the existence of solutions ai, bi
bounded in absolute value by

(2n+ 2)Amd/(2n+2−md) < (2n+ 2)A1/λ ≤ (8c0)n/λ

which is the bound required by picking c1 = 8c0.
We are left to show that the polynomials are both not identically zero and

not constant multiples of each other. Assume without loss of generality that
Q 6= 0 but P = cQ for a constant c ∈ Q (possibly 0). By condition 3, we have
from 2.4 that R(x) := (c + α)Q(x) has at x = α a zero of multiplicity at least
m since Dj(R(x))(α) = 0 for 0 ≤ j < m. Since c ∈ Q, we have that (c+ α) 6= 0
and Q(x) = (c+ α)−1R(x) has at x = α a zero of order at least m. This gives
us deg(Q) = n ≥ md > n+ 1 since λ < 0.5, a contradiction.

4.3 (10 points)
Let d, n, λ,m, α, P,Q, c1 be as in the previous problem. Let u = p/q and v = r/s
be rational numbers in lowest terms such that q, s ≥ 2 and

|α− u| < 1
qµ

and |α− v| < 1
sµ

for some µ > 1. Prove that for all 0 ≤ j < m,

|Dj(P + vQ)(u)| ≤ cn/λ2

(
1

qµ(m−j) + 1
sµ

)
for some c2 > 1 depending only on α.

Hint: Use the various facts about Dk and ‖ · ‖ from section 2.
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Solution. Let F (x, y) = P (x)+yQ(x). From the previous problem, we have that
F (x, a) has a zero of multiplicity at least m at α and so F (x, y) = F (x, α) +
(y − α)Q(x) = (x − α)mR(x) + (y − α)Q(x), where R ∈ C[x]. This gives us
DjF (x, y) = (x−α)m−jS(x) + (y−α)DjQ(x) by D(fg) = fD(g) + gD(f) and
Dj = j!D(j)

1 where S ∈ C[x]. Now using results from section 2 and the fact that
|u|, |v| < 1, we get

|Dj(F )(u, v)| = |(u− α)m−jS(u) + (v − α)DjQ(u)|
≤ q−µ(m−j)(n+ 1)‖S‖+ s−µ(n+ 1)‖DjQ‖

Now ‖Dj(Q)‖ ≤ (2c1)n/λ and DjF (x, α) = (x − α)m−jS(x). Thus, we get
from results of section 2 that

‖S‖ < (degS + 1)(2/|α|)n−j‖DjF (x, α)‖ ≤ (16c1/α)n/λ

since deg(S) ≤ n < 2n, |α| < 1 and ‖DjP‖, ‖DjQ‖ ≤ (2c1)n/λ. Since 2(n+1) ≤
4n, the desired estimate follows by choosing c2 = 64c1/|α|.

4.4 (12 points)
Let d, n, λ,m, α, P,Q, u = p/q, v = r/s be as in the previous problem. Prove
that

Dh(P + vQ)(u) 6= 0
for some h ∈ Z+ such that h ≤ 1 + (c3/λ)n/ log q, where c3 > 0 depends only
on α. Note that log q = loge q.

Hint: Recall part 4 of Problem 3.3.

Solution. Observe that W := D(P )Q−D(Q)P 6= 0 since P,Q are not propor-
tional, by Question 2.5. We have D(j)(W ) =

∑j
i=0
(
j
i

)
(D(i+1)(P )D(j−i)(Q) −

D(j−i)(P )D(i+1)(Q)) by applying D(fg) = fD(g) + gD(f) iteratively. Let h
be the minimum positive integer such that Dh(P + vQ)(u) 6= 0. We know
h exists since P + vQ 6= 0 as a polynomial and so for 0 ≤ j < h, we have
(Dj(P ) + vDj(Q))(u) = 0. Eliminating v gives the equations (Dj(P )Di(Q) −
Di(P )Dj(Q))(u) = 0 for 0 ≤ i, j < h and thus Dj(W ) = (j!)−1D(j)(u) = 0 for
0 ≤ j < h − 1 and hence W has a zero of order at least h − 1 at x = u. We
know from part 4 of 3.3 that qh−1 ≤ ‖W‖ and

‖W‖ ≤ 2n‖PQ‖ ≤ 2n(2n+ 1)c2n/λ
1 ≤ (4c2

1)n/λ,

implying the desired result when c3 = log(4c2
1).

4.5 (22 points)
Let 0 < ε < 1/2. Prove that for all α ∈ Q of degree d ≥ 1,∣∣∣∣α− p

q

∣∣∣∣ < 1
q1+ε+d/2
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has only finitely many solutions for the rational p/q in lowest terms.
Hint: Assume that there are infinitely many solutions. Let t be a an even

integer such that t > 4d/ε − 2 and let µ = 1 + ε + d/2. Given t, carefully
select n, λ,m, P,Q, u = p/q, v = r/s as in the above problems (u, v exist by the
assumption of infinitely many solutions) and produce a contradiction between
the results of Problems 4.3 and 4.4.

Solution. By 3.1.2, it suffices to show this theorem for algebraic integers β, since
for any α we can let β = kα, and if∣∣∣∣kα− p

q

∣∣∣∣ > c

q1+ε+d/2

for any fraction p
q 6= kα, then∣∣∣∣α− p

kq

∣∣∣∣ > c/k

q1+ε+d/2

for any fraction p
kq 6= α. Thus if we show c to exist in the first case, there are

only finitely many solutions for p/q, by Lemma 4.1 in the solution for question
4.1.

Using Question 4.1, we reduce to the case of d ≥ 3 and α is an algebraic
integer in I. Assume that

∣∣∣α− p
q

∣∣∣ < 1/q1+ε+d/2 for infinitely many p
q ∈ Q.

Choosing approximation: Fix even t such that λ = 2/(2 + t) < ε/2d and thus
0 < λ < 1

12 and t ≥ 24. Let n run through the arithmetic progression defined
by n = i(t/2 + 1)d − 1 for i ∈ N and let m = (2n + 2)(1 − λ)/d = it. Pick
c = max(c1/λ

1 , c
1/λ
2 , c

1/λ
3 ) (from above) and set µ = 1 + ε + d/2 and δ = (1 +

2ε/d)(1− λ)− 1. Select two rational approximations u = p
q and v = r

s from the
infinitely many available such that (p, q) = (r, s) = 1, 2 ≤ q < s and

1. |α− u| < q−µ

2. |α− v| < s−µ

3. log q > 2cdµ/δ

4. log s > (t+ 2(µ+ t)/δ) log q.

Pick m = it such that

log s
log q − t ≤ m <

log s
log q

and n = i(t/2 + 1)d − 1. Pick polynomials P,Q using Problem 4.2 and pick
minimal h such that w := Dh(P + vQ)(u) 6= 0.

12



Obtaining a contradiction: We get m > 6t > 100 from lower bounds on m
and assumption (4) from above. Since 4n/d ≥ 2(n + 1)/d > m > 100, we get
n > 25d. From the previous problem, n > 2d and we get h < m because

h ≤ 1 + cn/ log q < 1 + n/2d < n/d <
11
6 (n+ 1)/d < (2n+ 2)(1− λ)/d = m

. We have

(qn−hs)−1 ≤ |w| < cn(q−µ(m−h) + s−µ) ≤ (2c)nq−µ(m−h).

The first inequality follows from w 6= 0 and qn−hsw ∈ Z since DhP,DhjQ ∈
Z[x] and have degrees atmost n−h. The second inequality follows from Problem
4.3 and that s > qm. Taking logarithms we get

µm− µh+ h− n ≤ log s
log q + n

log(2c)
log q ≤ m+ t+ n

log(2c)
log q

by the lower bound on m. Since

1. h ≤ (1 + cn/ log q) by 3.4,

2. (µ− 1)m− n > (ε+ d/2)2n(1− λ)− n = δn, and

3. log q < 2cdµ/δ,

the above statement reduces to n ≤ 2(µ + t)/δ which can’t hold for large i.
Hence the contradiction.
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