
Number Theory A Solutions

Written by Albert Zhou

1. [3] Albert has a very large bag of candies and he wants to share all of it with his friends. At
first, he splits the candies evenly amongst his 20 friends and himself and he finds that there are
five left over. Ante arrives, and they redistribute the candies evenly again. This time, there
are three left over. If the bag contains over 500 candies, what is the fewest number of candies
the bag can contain?

Solution: Note that 21 and 22 are relatively prime, so we can apply the Chinese Remainder
Theorem to find that there is a unique solution modulo 462. Taking x to be the answer, we
have

x ≡ 5 (mod 21)

x ≡ 3 (mod 22)

Solving this system, we find that

x ≡ 47 (mod 462),

so we have x = 509 .

2. [3] How many ways can 22012 be expressed as the sum of four (not necessarily distinct) positive
squares?

Solution: We have the equation a2 + b2 + c2 +d2 = 22012. First, consider the problem modulo
4. The only residues of squares modulo 4 are 0 and 1.

If all of the squares have residues of 1 modulo 4, then they are all odd and we consider the
problem modulo 8. The only residues of squares modulo 8 are 0, 1, and 4, and because
22012 ≡ 0 (mod 8), we see that the squares cannot all be odd, so they must all be even.

If all of the squares are even, then we divide both sides by 4 and repeat the process. We see
that the only solution is

a = b = c = d = 21005,

so there is only 1 solution.

Problem contributed by Wesley Cao.

3. [4] Let the sequence {xn} be defined by x1 ∈ {5, 7} and, for k ≥ 1, xk+1 ∈ {5xk , 7xk}. For

example, the possible values of x3 are 55
5

, 55
7

, 57
5

, 57
7

, 75
5

, 75
7

, 77
5

, and 77
7

. Determine the
sum of all possible values for the last two digits of x2012.

Solution: Note that 74 = 2401 ≡ 1 (mod 100) and that 5n ≡ 25(mod 100) for n ≥ 2. Then we
must consider 3 cases.
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Case 1: We consider numbers of the form 5x, where x is an odd positive integer greater than
1. Clearly, from our above observation, 5x ≡ 25 (mod 100).

Case 2: We consider numbers of the form 75
x

, where x is an odd positive integer greater than
1. Then, we apply our observation to get 75

x ≡ 725 (mod 100), which we can further reduce to
725 ≡ 7 (mod 100).

Case 3: We consider numbers of the form 77
x

, where x is an odd positive integer greater than
1. Then we have 7x ≡ (−1)x (mod 4) ≡ −1 (mod 4). 73 ≡ 43 (mod 100), so the residue is 43 in
this case.

Finally, we have 25 + 7 + 43 = 75 .

Problem based on China 2010.

4. [4] Find the sum of all possible sums a + b where a and b are nonnegative integers such that
4a + 2b + 5 is a perfect square.

Solution: This question is based on quadratic residues. If a > 1 and b > 2 then the resulting
number is 5 (mod 8), hence not a perfect square.

Then we check other cases 1 by 1:
1) b = 0. This becomes 4a + 6 which is 2 (mod 4) (a > 0) or 3 (mod 4) (a = 0), not a perfect
square.
2) a = 0. This becomes 2b + 6 which is either 7, 8, or is 2 (mod 4), so it’s not a perfect square.
3) b = 1. This becomes 4a + 7 which is either 8, or is 3 (mod 4), so it’s not a perfect square.
4) a = 1. This becomes 2 ∗ b + 9, which is 2 (mod 3) if b is odd (so it’s not a perfect square),
and if b is even, let b = 2k, then if k > 2 then (2k)2 < 2b + 9 < (2k + 1)2, and only when k = 2
we get a perfect square. Hence only solution in this case is a = 1, b = 4.
5) b = 2. This becomes 4a + 9, and if a > 2 then (2a)2 < 4a + 9 < (2a + 1)2, and only when
a = 2 we get a perfect square. Hence only solution in this case is a = b = 2.

And so we get the solutions a = 1, b = 4 and a = b = 2. Thus, our answer is 9 .

Problem contributed by Chengyue Sun.

5. [5] Call a positive integer x a leader if there exists a positive integer n such that the decimal
representation of xn starts (not ends) with 2012. For example, 586 is a leader since 5863 =
201230056. How many leaders are there in the set {1, 2, 3, ..., 2012}?
Solution: We see that x is a leader if and only if there exists a positive integer t such that

2.012× 10s ≤ xn ≤ 2.013× 10s

Because all values are greater than or equal to 1, we can take the logarithm of each part of
the inequality, yielding

s + log102.012 ≤ n log10x ≤ s + log102.013.

If log10 x is irrational, then we are guarenteed to find a n to satisfy these conditions, by the
Equidistribution Theorem (this is also intuitively obvious). The only integers x for which
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log10 x is rational are powers of 10. For x = 1, 10, 100, 1000, we can see that the leading digit
is always 1, which means x is not a leader for these four numbers. All other numbers have an
irrational common log, so there are 2012− 4 = 2008 leaders in the set.

Problem contributed by Wesley Cao.

6. [6] Let p1 = 2012 and pn = 2012pn−1 for n > 1. Find the largest integer k such that p2012−p2011
is divisible by 2011k.

Solution: The difference in question is

p2012 − p2011 = p2011
(
(2012)p2011−p2010 − 1

)
= p2011

(
(2012)p2011−p2010 − 1p2011−p2010

)
.

We note that we can apply the Lifting the Exponent Lemma to the quantity in parentheses
because 2011 is prime. The lemma states that if x and y are integers, n is a positive integer,
and p is an odd prime such that p|x− y but x and y are not divisible by p, we have

vp(xn − yn) = vp(x− y) + vp(n)

where vp(m) refers the greatest power in which p divides m, i.e. pvp(m)|m but pvp(m)+1 6 |m.

So by this lemma,

v2011
(
(2012)p2011−p2010 − 1p2011−p2010

)
= v2011(2011) + v2011(p2011 − p2010),

where v2011(x) denotes the largest m such that 2011m divides x. Clearly v2011(2011) = 1, so
we need to determine v2011(p2011 − p2010). But we note that this sequence is recursive, with 1
being added at each step. So we just need to find v2011(p2 − p1).

v2011(p2 − p1) = v2011
(
2012(20122011 − 12011

)
= v2011(2011) + v2011(2011).

So v2011(p2 − p1) = 2 and we have v2011(p2012 − p2011) = 2012, so k = 2012 .

Problem contributed by Wesley Cao.

7. [7] Let a, b, and c be positive integers satisfying

a4 + a2b2 + b4 = 9633

2a2 + a2b2 + 2b2 + c5 = 3605.

What is the sum of all distinct values of a + b + c?

Solution: We begin by summing the two systems and adding 1 to each side to obtain

a4 + 2a2b2 + b4 + 2a2 + 2b2 + 1 + c5 = 13239,

which we can rewrite as
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(a2 + b2 + 1)2 + c5 = 13239.

Now we consider this system modulo 11, because the least common multiple of 2 and 5 is 10,
and by Fermat’s Little Theorem, we have x10 ≡ 1(mod 11) whenever x is not a multiple of

11. Thus, the only possible residues for
(
c5
)2

are 0 and 1, so the possible residues for c5 are
0, ±1. The only possible residues for squares modulo 11 are 0, 1, 3, 4, 5, and 9. Considering
the right-hand side modulo 11, we find that the residue is 6, so

c5 ≡ 1 (mod 11),
(
a2 + b2 + 1

)2 ≡ 5 (mod 11).

Going back to the second given equation, we see that we only have to check for c = 1, 2, 3, 4, 5.
But 25 ≡ −1 (mod 11), so we only consider c = 1, 3, 4, 5. Considering our summed equation
now, we see that c cannot be 1 because the last digit of a square cannot be 8. We can check
that c = 3 is the only possible solution, with a2 + b2 + 1 = 114. The only solutions are a = 7,
b = 8 and a = 8, b = 7, so a + b + c = 18 .

8. [8] Find the largest possible sum m + n for positive integers m,n ≤ 100 such that m + 1 ≡
3 (mod 4) and there exists a prime number p and nonnegative integer a such m2n−1−1

m−1 = mn+pa.

Solution: We consider two cases: n = 2 and n > 2. When n = 2, then

m2n−1 − 1

m− 1
= m2 + m + 1.

Let p = m + 1, a = 1, and we are done.

For n ≥ 3, let n + 1 = 2kq, with k ∈ N and q ∈ Z+ and 2 6| q. Because

2n = (1 + 1)n ≥ 1 + n +
n(n− 1)

2
> n + 1,

we have 0 ≤ k ≤ n− 1. But

m2n − 1

m− 1
=

n−1∏
t=0

(m2t + 1),

so we have

m2k + 1 | m
2n − 1

m− 1
,

m2k + 1 | mn+1 + 1(= (m2k)q + 1).

Let dn = m2n−1−1
m−1 −mn. Then we get
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mdn =
m2n −m

m− 1
−mn+1 =

m2n − 1

m− 1
− (mn+1 + 1).

Therefore m2k + 1 | mdn, and from this we have m2k + 1 | dn. If dn = pa, then p | m2k + 1,
and from 2 | m and thus 2 6| p. Because

mp−1 ≡ 1 (mod p),

m2k+1

≡ (−1)2 ≡ 1 (mod p),

we have

m(p−1, 1k+1) ≡ 1 (mod p),

but

m2k ≡ −1 6≡ 1 (mod p),

therefore (p− 1, 2k+1) = 2k+1, so we have

p ≡ 1 (mod 2k+1). (1)

Note that

pa =
m2n−1 − 1

m− 1
−mn =

2n−2∑
t=0

mt −mn ≡ 1 + m + m2 (modm3). (2)

If k > 0, then from (1) we know that p ≡ 1 (mod 4), thus

pa ≡ 1 6≡ 1 + m (mod 4),

which is contrary to (2). Therefore, k = 0. From p | m2k + 1, we have p | m + 1, and because
m + 1 is a prime number, we have p = m + 1, so pa ≡ 1 (mod 8) or pa = m + 1 (mod 8), but
1 + m + m2 6≡ 1, m + 1 (mod 8), which contradicts (2). Therefore, there are no solutions for
n ≥ 3, so the only m, n satisfying the conditions are: n = 2, m = q − 1, where q is any prime
number such that q ≡ 3 (mod 4).

All that is left is to determine the largest prime number less than 100 that has a residue of 3
modulo 4. This number is 83, so m = 82 and m + n = 84 .

Problem based on China 2010.
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