
Individual Finals A Solutions

1. Let p be a prime number greater than 5. Prove that there exists a positive integer n such that
p divides 20n + 15n − 12n.

Solution:

I claim that n = p − 3 works. Using the cool “Pythagorean triple” 1
202 + 1

152 = 1
122 , we

have 20p−3 + 15p−3 − 12p−3 = 20p−1

202 + 15p−1

152 −
12p−1

122 = 20p−1−1
202 + 15p−1−1

152 − 12p−1−1
122 =

9(20p−1−1)+16(15p−1−1)−25(12p−1−1)
3600 .

Since we know that this fraction is an integer, to show that it is divisible by p it suffices to check
that the numerator is divisible by p and the denominator is not. Since p > 5, p is relatively
prime to 12, 15, and 20, so by Fermat’s little theorem we see that p divides the numerator.
Also since p > 5 and 3600 = 24 · 32 · 52, we see that p does not divide the denominator. We
conclude that p divides 20p−3 + 15p−3 − 12p−3.

The intuition for this solution is quite simple: since f(n) = 20n + 15n − 12n equals 0 for
n = −2 and f(n) mod p is periodic with some period dividing p − 1 for n ≥ 0 (by Fermat’s
little theorem), we ought to have f(−2 + (p− 1)) ≡ 0 (mod p).
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2. Let a, b, c be real numbers such that a+ b+ c = abc. Prove that 1
a2+1 + 1

b2+1 + 1
c2+1 ≥

3
4 .

Solution:

As the condition and the inequality are invariant under the transformation (a, b, c)→ (−a,−b,−c),
we may assume that at most one of a, b, c is negative, so WLOG let a, b ≥ 0. Let A,B ∈

[
0, π2

)
be such that tanA = a and tanB = b, and let C = π − A − B. Then, c = a+b

ab−1 =

− tanA+tanB
1−tanA tanB = − tan (A+B) = tanC.

We have 1
a2+1 + 1

b2+1 + 1
c2+1 = 1

tan2 A+1 + 1
tan2 B+1 + 1

tan2 C+1 = cos2A + cos2B + cos2 C =

cos2A + cos2B + (sinA sinB − cosA cosB)2 = cos2A + cos2B + (1 − cos2A)(1 − cos2B) −
2 sinA sinB cosA cosB + cos2A cos2B = 1 − 2 cosA cosB(sinA sinB − cosA cosB) = 1 −
2 cosA cosB cosC.

We now show that cosA cosB cosC ≤ 1
8 . Since A,B ∈

[
0, π2

)
, cosA ≥ 0 and cosB ≥ 0, so

if cosC < 0 then cosA cosB cosC ≤ 0 ≤ 1
8 . Otherwise we may assume cosC ≥ 0, so by

AM-GM we have cosA cosB cosC ≤
(
cosA+cosB+cosC

3

)3
. Finally, since A,B,C ∈ [0, π] and

cosx is concave on this interval, we have by Jensen’s that cosA+cosB+cosC
3 ≤ cos

(
A+B+C

3

)
=

cos
(
π
3

)
= 1

2 . Putting this together gives cosA cosB cosC ≤ 1
8 , so 1

a2+1 + 1
b2+1 + 1

c2+1 =

1− 2 cosA cosB cosC ≥ 3
4 .
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3. Let ABC be a triangle with incenter I, and let D be the foot of the angle bisector from A to
BC. Let Γ be the circumcircle of triangle BIC, and let PQ be a chord of Γ passing through
D. Prove that AD bisects ∠PAQ.
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Solution:

If PQ = BC the result is trivial, so we may assume otherwise.

Let m∠ABC = b, m∠BCA = c, and m∠CAB = a. Also, let T be the center of Γ and let
Ω be the circumcircle of triangle ABC. We first claim that T lies on Ω. As m∠ICB = c

2 ,
we have m∠ITB = c. Similarly, m∠ITC = b. Thus m∠BAC + m∠BTC = a + (b + c) = π,
so quadrilateral ACTB is cyclic. As BT and CT are chords of Ω with equal length, we must

have m∠BAT = m∠CAT , so T lies on line
←−→
AID.

We now wish to show that quadrilateral AQTP is cyclic. Let Λ be the circumcircle of triangle
APQ. Since one of P,Q lies inside Ω and the other lies outside Ω, Λ and Ω must intersect in
exactly two points, and we let the point of intersection which is not A be called T ′. As Λ and
Ω have radical axis AT ′, Λ and Γ have radical axis PQ, and Ω and Γ have radical axis BC,
it follows by the radical axis theorem that these three line segments must be concurrent. As
BC and PQ intersect at point D, we see that AT ′ must pass through D, so T ′ lies both on←→
AD and on Ω.

←→
AD and Ω intersect only at A and T , and as T ′ 6= A, it follows that T ′ = T .

Thus AQTP is cyclic.

As
∣∣PT ∣∣ =

∣∣QT ∣∣, we see that m∠TPQ = m∠TQP . Since AQTP is cyclic, we conclude that
m∠DAP = m∠TAP = m∠TQP = m∠TPQ = m∠TAQ = m∠DAQ, and the result follows.
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