
Algebra A Solutions

Written by Monica Marinescu

1. [3] Compute the smallest positive integer a for which

√
a +
√
a + ...− 1

a + 1
a+..

> 7.

Solution: Let the first term be x and the second y. Then we have x =
√
a + x and y = 1

a+y
After solving this system in terms of a, we can write the difference as

1

2
(a + 1 +

√
4a + 1−

√
a2 + 4)

Further simplification gives:

a−
√
a2 + 4 +

√
4a + 1 > 13,

where the first term is a very small negative number. Thus a = 42 does not quite get us there
but a = 43 does.

Answer: 43

2. [3] If x, y, and z are real numbers with
x− y

z
+

y − z

x
+

z − x

y
= 36, find

2012 +
x− y

z
· y − z

x
· z − x

y

Solution:

36 =
(x− y)xy + (y − z)yz + (z − x)xz

xyz

=
(x− y)xy + y2z − yz2 + xz2 − x2z

xyz

=
(x− y)xy − (x + y)(x− y)z + z2(x− y)

xyz

=
(x− y)(xy − xz − yz + z2)

xyz

=
(x− y)(y − z)(x− z)

xyz

36 = − (x− y)(y − z)(z − x)

xyz

2012 +
(x− y)(y − z)(z − x)

xyz
= 2012− 36 = 1976

Answer: 1976
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3. [4] Compute
∞∑

n=1

n + 1

n2(n + 2)2

Your answer in simplest form can be written as a/b, where a, b are relatively-prime positive
integers. Find a + b.

Solution: Let K be the result.

K =
∞∑

n=1

n + 1

n2(n + 2)2

4K +
∞∑

n=1

1

(n + 2)2
=
∞∑

n=1

n2 + 4n + 4

n2(n + 2)2

4K − 1− 1

4
+
∞∑

n=1

1

n2
=
∞∑

n=1

(n + 2)2

n2(n + 2)2

4K − 5

4
+
∞∑

n=1

1

n2
=
∞∑

n=1

1

n2

4K − 5

4
= 0

K =
5

16

So a + b = 5 + 16 = 21.

Answer: 21

4. [4] Let f be a polynomial of degree 3 with integer coefficients such that f(0) = 3 and f(1) = 11.
If f has exactly 2 integer roots, how many such polynomials f exist?

Solution: The answer is 0, but the argument is more general: if f(0) and f(1) are odd, then
we claim that f can’t have any integer roots:
Suppose a is an integer solution. Then f(x) = (x−a)g(x), and g(x) also has integer coefficients.
So f(0) = −ag(0) and f(1) = (1− a)g(1), where g(0) and g(1) are also integers. Since either
a or 1− a is even, f(0) and f(1) can’t be both odd, as in the hypothesis, so f has no integer
roots.

Answer: 0

5. [5] What is the smallest natural number n greater than 2012 such that the polynomial f(x) =
(x6 + x4)n − x4n − x6 is divisible by g(x) = x4 + x2 + 1?

Solution: Let g = x4 + x2 + 1 = (x2 + x + 1)(x2 − x + 1). If a is solution to the polynomial
g1 = x2 + x + 1 and b is solution to g2 = x2 − x + 1, then f is divisible by g ⇐⇒ a and b are
solutions to f , as well, so f(a) = f(b) = 0.
On the other hand, if a2 + a + 1 = 0, then a3 = 1; also, since b2 − b + 1 = 0, it follows that
b3 = −1.

f(a) = (a6 + a4)n − a4n − a6 = (1 + a)n − an − 1

= (−a2)n − an − 1 = 0
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Noting that we can substitute every a3 with 1,

f(a) = 0 ⇐⇒ n ∈ {6k + 1, 6k + 5}

Similarly,

f(b) = (b6 + b4)n − b4n − b6 = (1− b)n + (−1)nbn − 1

= (−1)nb2n − (−1)nbn − 1 = 0

Noting that we can substitute every b3 with −1,

f(b) = 0 ⇐⇒ n ∈ {6k + 1, 6k + 5}

So the smallest instance of n larger than 2012 is 2015. This is the final answer.

Answer: 2015
Thanks to Calvin Deng for pointing out the error in the original solutions with f(b).

6. [6] Let an be a sequence such that a0 = 0 and:

a3n+1 = a3n + 1 = an + 1

a3n+2 = a3n + 2 = an + 2

for all natural numbers n. How many n less than 2012 have the property that an = 7?

Solution: Let f(n) = an.
In the end we obtain that f(n) represents the sum of the digits of n in the representation in
base 3. To reach that, first we see that:

n = 3bn
3
c+ r,

where r ∈ {1, 2}. Thus,

f(n) = f(3bn
3
c+ r) = f(3bn

3
c) + r

= f(bn
3
c) + r = f(bn

3
c) + n− 3bn

3
c

We can also apply this to bn3 c instead of n, taking into consideration that b b
n
3 c
3 c = b n

32 c.
Thus,

f(n) = f(bn
3
c) + n− 3bn

3
c

= f(b n
32
c) + bn

3
c − 3b n

32
c+ n− 3bn

3
c

= f(b n
32
c) + n− 2bn

3
c − 3b n

32
c

= ... = f(b n
3k
c) + n− 2bn

3
c − 2b n

32
c − ...

...− 2b n

3k−1
c − 3b n

3k
c
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For k large enough, b n
2k
c = 0, so f(n) = n − 2bn3 c − 2b n

32 c − ..., which is exactly the sum of
the digits of n written in base 3.

So the problem now is just how many numbers less than 2012 have, in base 3, the sum of
their digits 7, which is easy to find.

We will do the counting in base 3. Number 2012 in base 3 is 2202112, so every number
smaller than 2012 will need to have at most 7 digits.
Case 1: how many numbers have 3 of its digits 2, one digit 1 and three 0?
We assume we have 7 positions and each digits occupies one of these positions (note: 0 can
be the first digit, and we just neglect it). This arrangement can be done in

(
7
3

)(
4
1

)
ways; from

these, we have to subtract the numbers greater than 2202112. If one such number starts with
222, the rest can be continued in

(
4
1

)
ways. If the number starts with 221, the rest can be

completed in
(
4
1

)
ways. Thus, there are 132 numbers smaller than 2202112 with three of the

digits 2.
Case 2: how many numbers have 2 of their digits 2, 3 digits 1 and 2 digits 0?
Again, we assume we have to fill in the 7 positions. That can be done in

(
7
2

)(
5
2

)
ways. From

these numbers we have to subtract the ones larger than 2202112, thus the ones that start with
221. Those that start with 221 can be completed in

(
4
2

)
ways, so we get that there are 204

numbers smaller than 2202112 which have two of their digits 2.
Case 3: how many numbers have one of their digits 2, five digits 1 and one 0?
We can form

(
7
1

)(
6
1

)
numbers, and all of them are smaller than 2202122, so we get 42 numbers.

Case 4: how many numbers have no digit 2 and seven digits 1?
Only one, 1111111.
By adding, we get 132 + 204 + 42 + 1 = 379 numbers which have the sum of their digits in
base 3 seven, and are smaller than 2012. Answer: 379

7. [7] Let an be a sequence such that a1 = 1 and an+1 = ban +
√
an + 1

2c, where bxc denotes the
greatest integer less than or equal to x. What are the last four digits of a2012?

Solution: Computing some particular cases suggests that the function f is defined by the fol-
lowing:

an = 1 + bn
2
cbn + 1

2
c,

for all natural numbers n.
We will show this hypothesis is true by induction. We assume it’s true for n and prove it for
n + 1.
If n = 2m, then an = 1 + m2. Thus,

an+1 = ban +
√
an +

1

2
c = bm2 + 1 +

√
m2 + 1 +

1

2
c

= m2 + 1 + m = 1 + m(m + 1) = 1 + bn + 1

2
cbn + 2

2
c
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If n = 2m + 1, then an = 1 + m(m + 1), thus

an+1 = b1 + m(m + 1) +
√

1 + m(m + 1) +
1

2
c = 1 + m(m + 1) + m + 1

= 1 + (m + 1)2 = 1 + bn + 1

2
cbn + 2

2
c

The induction is complete, so that is the solution to the equation. In conclusion, a2012 =
1 + b 20122 cb

2013
2 c = 1012037, so the answer is 2037.

Answer: 2037

8. [8] If n is an integer such that n ≥ 2k and n < 2k+1, where k = 1000, compute the following:

n−
(⌊

n− 20

21

⌋
+

⌊
n− 21

22

⌋
+ · · ·+

⌊
n− 2k−1

2k

⌋)
.

Solution: Let us prove that bn−12 c +bn−222 c+...+bn−2
k+1

2k
c = n− k − 1.

If we write n = 2k +ak−12k−1 + ...+a12+a0, then bn−12 c = 2k−1 +ak−12k−2 + ...+a1 +a0−1,

bn−222 c = 2k−2 + ak−12k−3 + ... + a1 − 1, ..., bn−2
k−1

2k
c = 1 + ak−1 − 1.

By adding all the terms, we obtain:

k∑
i=1

bn− 2i−1

2i
c = (1 + 2 + ... + 2k−1) + ak−1(1 + 2 + ... + 2k−2 + ...

... + a1 + (ak−1 − 1) + (ak−2 − 1) + ... + (a0 − 1)

= 2k − 1 + ak−1(2k−1 − 1) + ... + a1 + (ak−1 + ak−2 + ... + a0)− k − 1

= 2k + ak−12k−1 + ... + a12 + a0 − k − 1 = n− k − 1

Thus the answer is k + 1 or 1001.

Answer: 1001
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