
Geometry B Solutions

1. Because ∠A = 70◦, we know that ∠ABH = 20◦, so ∠HBC = 40◦. Constructing DC, we have
that triangle BDC is isosceles, so ∠BDC = ∠BCD = 70◦. Noticing that ∠BAC = ∠BDC =

70◦, we have that quadrilateral ABCD is cyclic. It follows that ∠BDA = ∠BCA = 50◦ .

Figure 1: Problem 1 diagram.

Figure 2: Problem 2 diagram.

2. Note that the solid formed is a generalized cylinder. It is clear from the diagram that the
area of the base of this cylinder (i.e., a vertical cross-section of the log) is composed of two
semicircles of radius 3 and a part of an annulus. In the right triangle in the diagram, the
hypotenuse is 4 and the vertical leg is 2. Thus, it is a 30-60-90 triangle, so the central angle in
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the annulus is 120◦. Since the annular region has inner radius 1 and outer radius 7, the total
area is 2( 12π3

2) + 1
3π(7

2 − 12) = 25π. Hence the volume of the cylinder is 10 · 25π = 250π, so

the answer is 250 .

3. First Solution: Since BC = (1/2)AD, we have that BC = MD, and it follows that△BCP ∼=
△DMP . Thus, CP = PM . Select R on CD such that MR is parallel to AQ. Then,
CP = PM =⇒ CQ = QR and AM = MD =⇒ QR = RD. Thus, CQ/QD = 1/2, so the

answer is 1 + 2 = 3 .
Second Solution: As in the first solution, note that△BCP ∼= △DMP . From this congruence
it follows that BP = PD and CP = PM . Extend AP to meet line BC at point A′. Because
CP = PM , we have △APM ∼= △A′PC. Thus, BC = AM = CA′. It follows that point Q is
the centroid of triangle BA′D, so CQ/QD = 1/2. Thus, our answer is 1 + 2 = 3 .

Figure 3: Problem 3 diagram.

4. It is easy to see, by the Pythagorean theorem, that L(c) for any c consists of a line perpendicular
to AB. Thus, in order for the intersection of L(c) and ω to consist of a single point, L(c) must
be tangent to ω. In this case, define X to be the point on L(c) collinear with A,B. If B is
between X and A then

c = (XA)2 − (XB)2 = (XA−XB)(XA+XB)

= (AB)(2r)

= 5 · 2 · 6
= 60.

Note that r above denotes the radius of ω. Otherwise, if A is between X and B then

(XA)2 − (XB)2 = −(AB)(2r) = −60.

Thus the possible values of c are ±60, so our answer is c = 60 .

5. Note: The problem was flawed as stated on the exam. Many thanks to Will Zhang of PEA
Green for pointing out that there is a configuration of the three circles of given radii that can
give rise to arbitrarily large radii for the fourth circle. If the problem were reworded to specify
that the three circles with given radii were externally tangent to one another, the following
would have been the solution:
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The largest possible radius of the fourth circle is achieved when it is internally tangent to the
first three. Let O1 and O2 be the centers of the circles of radius 5 and let O3 be the center
of the circle of radius 8. Let O be the center of the largest circle. Note that O must be on
the altitude O3H of the triangle O1O2O3. Let r be the radius of the largest circle, and let
θ = ∠OO3O2. Note that O2HO3 is a 5-12-13 right triangle, so HO3 = 12. From this right
triangle, we find cos θ = 12/13. Then, from the theorem of cosines in triangle OO3O2 we find
that

(r − 8)2 + 132 − 2(r − 8)13 · 12
13

= (r − 5)2.

Simplifying the above equation yields

r2 − 16r + 82 + 132 − 24(r − 8) = r2 − 10r + 52

⇒82 + 132 − 52 + 8 · 24 = 30r

⇒30r = 82 + 122 + 8 · 24 = 16(4 + 9 + 12) = 16 · 25 ⇒ r =
40

3
.

Thus the answer is 40 + 3 = 43 .

Figure 4: Problem 5 diagram.

6. Pick P on DM and R on CM so the AP is perpendicular to DM and BR is perpendicular to
CM . Because of the way the paper is being folded, the projection of A onto the plane of the
paper is always along line AP , and the projection of B along line BR. Thus, the two lines will
intersect in exactly the point H. Since △HMB ∼ △MBC, we have HM/MB = MB/BC,

so HM = (MB/BC) ·MB = (60/80) · 60 = (3/4) · 60 = 45 .

7. Without loss of generality, suppose A lies to the left of B. Let D′ be the point such that
DAD′B is a parallelogram. No matter what the positions of A and B are, we have that
BD = 15/ sin(60◦) = 10

√
3, AC = 15/ sin(30◦) = 30, and ∠CAD′ = ∠CAB + ∠BAD′ =

∠CAB + ∠DBA = 90◦. Thus, CD′ is always 20
√
3 as A and B vary. Note that AD +BC =
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Figure 5: Problem 6 diagram.

Figure 6: Problem 6 Diagram

BD′ + BC. By the triangle inequality, this length is no less that CD′ = 20
√
3, and equality

can be achieved by fixing A and moving B to the intersection of CD′ with ℓ1. Thus, 20
√
3 is

the minimum length, so the answer is 20 + 3 = 23 .

8. We claim that the length of arc MN is constant as P varies. We can see this by noting that
⌢

MLB −
⌢

AN= 1
2∠APB, which is constant, and that

⌢

MLB +
⌢

MA is constant. Subtracting

these two constant quantities, we get that
⌢

MN=
⌢

MA +
⌢

AN is constant. Since OS is the
distance from O to the midpoint of a chord of constant length, OS is constant as well. Thus,
the locus of all points S is a part of a circle centered at O. It follows that the minimum
distance from this locus to point A is the difference between the radii of ω1 and of the locus
of S. Now, to find the radius of the locus of S, consider the location of S when P is at the
midpoint C of major arc AB. Since ω2 passes through O, we have that CA and CB are
tangent to ω1. Thus, the segment MN becomes AB, and S coincides with T , the midpoint
of AB. By the similarity of triangles TAO and ACO, we have that OT/OA = OA/OC, so
OT = OA2/OC = 62/10 = 18/5. Thus, the radius of the locus of S is 18/5, and the difference

between the two radii is 6− 18/5 = 12/5, so the answer is 12 + 5 = 17 .
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Figure 7: Problem 7 diagram.

Figure 8: Problem 8 diagram.
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