
Combinatorics B Solutions

1. There are
(
5
2

)
− 4 = 6 ways to find the pair of places to put the two vowels in. Then, there

are 2! ways to arrange the vowels and 3! ways to arrange the consonants. Thus, the answer is
6× 2!× 3! = 72 .

2. Since there is no carrying involved, we can do casework based on the sum’s units digit. There
are no sums which have a units digit of 0, 1, or 2. If it is 3, 4, 8, or 9 then we know which
two digits were added; in each of these cases there are three possible values for the sum’s tens
digit, after which the hundreds digit is determined. If it is 5, 6, or 7 then there are two possible
pairs of added digits, and it is easily seen that in every such case there are five possible values
for the sum’s tens digit. Therefore there are 4 · 3 + 3 · 5 = 27 possible values for the sum.

3. Let cn denote the number of such colorings. If the rightmost column of two squares have the
same color (2 ways), then those two squares cannot be occupied by the same domino, so each
must be covered by a horizontal domino. Then, the previous column must be two squares
of the opposite color, and the rest of the 2 × (n − 2) board can be colored in cn−2 ways. If
they have two different colors (2 ways), then one can suppose that the rightmost column is
covered by a vertical domino, so that the rest of the 2× (n− 1) board can be colored in cn−1
ways: this is only because if the rightmost column is covered by two horizontal dominos, then
we can rotate those two dominos and result in a configuration where the rightmost column is
covered by a vertical domino, and we still have the same coloring. Hence we have the recursion
cn = 2cn−1 + 2cn−2 with c1 = 2, c2 = 6, and we compute that c6 = 328 .

Challenge: What if instead we have an infinite supply of two types of dominoes, one of which
has one white square and one black square, and the other which has two black squares?

4. Since f(1)2 = f(1), then f(1) = 1. We have that f(2)3 = f(8) ≤ 88, f(3)2 = f(9) ≤ 88, so
f(2) ≤ 4, f(3) ≤ 9. If f(2) = 2 and 3, there are respectively 5 and 6 possible values of f(3),
which fixes the value of each of f(2), f(3), f(4), f(6), f(8), f(9). Then f(5), f(7) can be any of
the 81 · 80 remaining values. If f(2) = 4 then f(3) 6= 1, 2, 4, 8 still, so f(3) can have 5 possible
values, and it follows that the total number of such functions is (5 + 6 + 5) · 81 · 80 = 28 · 34 · 5,
and the answer is 8 · 2 + 4 · 3 + 1 · 5 = 33 .

5. Fix one edge for the first point to lie on. If the second point lies on the opposite edge, it will
be of distance greater than one (with 1/4 probability), and if it lies on the same edge, then it
will be of distance less than one (again 1/4 probability). Suppose then that the second point
lies on one of the other two adjacent edges. If the first point is distance x from this edge, then
the other point must lie farther than

√
1− x2 from the vertex shared by the edges the two

points lie on. Therefore, this reduces to a geometric probability problem where we are finding
the area of a region outside of a quarter circle in the unit square (we could also view this as

the integral
∫ 1

0

√
1− x2 dx, although this is a bit more work). Thus, p = 1

4 + 1
2

(
1− π

4

)
= 6−π

8 ,

and b100pc = 35 .

6. To find the answer, we can instead subtract the number of ways we can position 4 bishops
such that at least 3 are bishops on a diagonal from the total number of cases. Also, since the
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problem asks for the remainder of the answer divided by 100, we only need to keep track of the
last two digits for intermediate steps. There are in total

(
25
4

)
≡ 50 (mod 100) ways of placing

4 bishops on the board.
•When there are 4 bishops on a diagonal, they are either on the main diagonals or the diagonals
with length 4. There are

2

(
5

4

)
+ 4 = 14

cases of this kind.
• Otherwise, there are exactly 3 bishops on some diagonal. They can be on the main diagonals,
the diagonals with length 4, or the diagonals with length 3. The number of cases can also be
calculated:

2

(
5

3

)(
20

1

)
+ 4

(
4

3

)(
21

1

)
+ 4

(
22

1

)
≡ 0 + 16 · 21 + 88 ≡ 24 (mod 100).

Therefore, we obtain the final answer to be 50− 14− 24 = 12 .

7. First solution: Turning to generating functions, this is the same problem as asking for the
coefficient of x263 in the polynomial

(1 + x + x2 + x3)(1 + x2 + x4 + x6) · · · (1 + x64 + x128 + x192)

and we can simplify the polynomial by telescoping:

x4 − 1

x− 1
· x

8 − 1

x2 − 1
· · · x

256 − 1

x64 − 1
=

x128 − 1

x2 − 1
· x

256 − 1

x− 1

= (1 + x2 + x4 + · · ·+ x126)(1 + x + x2 + · · ·+ x255).

From here we can easily calculate the coefficient of x263 to be 60 .

Second solution: First, notice the sum of all of the weights is 127 × 3 = 381, and any
combination of weights that sum to 263 corresponds to a combination of weights that sum to
381− 263 = 118 (by using the leftover weights instead). So we instead consider the number of
ways of forming a total weight of 118. Then, we can construct a bijection between any set of
weights to the set of even nonnegative integers 2m ≤ 118: use twice the weights corresponding
to the binary expansion of m, and then add the weights corresponding to the binary expansion
of 118− 2m. This is possible because the binary expansion of any natural number less than or
equal to 118 has at most 7 binary digits, corresponding to 26 = 64. Conversely, for any such
combination of weights, if zero or one of the 2n weights are used, then the corresponding binary
digit for m will be 0, while if two or three of the 2n weights are used, then the corresponding
binary digit for m will be 1. So again, there are 118

2 + 1 = 60 ways in total.

8. Define ai such that if in the ith minute from the beginning someone enters, then ai = 1, and
if someone leaves, then ai = −1. Hence, each possible sequence of entries and exits is denoted

by a sequence {ai}200i=1 containing 100 values of 1 and 100 values of −1. Define Sn =
n∑
i=1

ai for

2



0 ≤ n ≤ 200, and M = max
1≤i≤200

Si. First consider the number of possible sequences for which

M ≥ 10.

If a sequence {an} has M ≥ 10, we can find i such that Si = 10, since S0 = 0 and every Si
differs by 1 from the previous one. Let p be the minimum of these such i’s, so that Sp = 10
and Si < 10 for any i < p. Now define another sequence {bi} such that

bi =

{
−ai if i ≤ p,

ai if i > p
.

Then, this forms a bijection between all such sequences {an} with M ≥ 10 to all such sequences
{bi}200i=1 containing 90 values of 1 and 110 values of −1’s, since it is not hard to check that
this “reflection” is one-to-one and onto. (Essentially what we are doing is noting that for any
random walk with 200 steps of ±1 starting at 90, ending at 90, and going above 100, then we
can reflect the sequence after the first time the sequence goes above 100, which gives a random
walk starting at 90 and ending at 110.) Here, the number of sequences {bi} is

(
200
90

)
, so the

number of {an} with M ≥ 10 is also
(
200
90

)
.

Similarly, the number of {ai} with M ≥ 11 is
(
200
89

)
. Subtracting the two gives the number of

sequences {ai} with M = 10. This exactly satisfies the requirement of the problem, since the
maximum number of people at any time is 90 + 10 = 100. Also, the number of people will not
be negative, otherwise the number of people cannot reach 100 at any time. So

n =

(
200

90

)
−
(

200

89

)
=

21× 200!

90!× 111!
.

The greatest power of 2 in a factorial k! is given by Legendre’s formula to be

v2(k!) =

blog2 kc∑
i=1

⌊
k

2i

⌋
,

so calculating the powers in these three factorials, m = v2(200!)− v2(90!)− v2(111!) = 197−
86− 105 = 6 .
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