
Algebra B Solutions

1. Since ⊗(7, 1, 3) = 7−1
3 = 2 and ⊗(−3,−4, 2) = 2−(−4)

−3 = −2, our answer is

⊗(2,−2, 1) =
2− (−2)

1
= 4 .

2. First Solution: We write x2−2x+5 = (x−a)(x−b) = x2−(a+b)x+ab, so ab = 5, a+b = 2
(or we could apply Vieta’s formulas). From these elementary symmetric polynomials, we can
find all of the power sums of the roots:

a2 + b2 = (a+ b)2 − 2ab = 4− 10 = −6

a4 + b4 = (a2 + b2)2 − 2a2b2 = 36− 50 = −14

a8 + b8 = (a4 + b4)2 − 2a4b4 = 196− 2 · 625 = −1054

Thus, the answer is 1054 .

Second Solution: By the quadratic equation, the roots of x2 − 2x + 5 = 0 are given by

x = 2±
√
4−4·5
2 = 1± 2i =

√
5 ·
(

1√
5
± 2i√

5

)
. Note that these two roots are complex conjugates

of each other. By De Moivre’s formula,

|a8 + b8| = 2<
{√

5 cis θ
}8

= 2 · 54 cos 8θ,

where cos θ = 1/
√

5. By three applications of the double-angle formula, cos 8θ = 2(2(2 cos2 θ−
1)2 − 1)2 − 1 = 98

625 − 1 = −527
54 , so |a8 + b8| = 2 · 527 = 1054 .

Third Solution: As before, the two roots are 1± 2i. Then, squaring three times, (1 + 2i)2 =
−3 + 4i, (1 + 2i)4 = −7− 24i, (1 + 2i)8 = −527 + 336i. Similarly, (1− 2i)8 = −527− 336i (by

taking the conjugate of both sides), so |a8 + b8| = 2 · 527 = 1054 .

3. By inspection, we see that 1 is a root of this polynomial. Factoring out (x − 1), we have
f(x) = (x − 1)(x2 − 6x + 10). Since x2 − 6x + 10 = (x − 3)2 + 1, then for any x < 0 or
x > 3, both |x − 1|, |x2 − 6x + 10| ≥ 2, so their product cannot be prime. Trying directly,
f(0) = −10, f(1) = 0 are not prime. If x ≥ 2, we need at least one of x − 1 and (x − 3)2 + 1
to be equal to 1, so we only need to consider the cases x = 2 and x = 3. At both of these,
f(2) = f(3) = 2, so the sum of all distinct primes values taken on by f(x) is 2 .

4. Substituting iz in the equation gives

−z2 = f(iz + f(−z + f(−iz + f(z + f(iz + . . .))))).

We then have

f(z − z2) = f(z + f(iz + f(−z + f(−iz + f(z + . . . = z2

for all complex z. In particular, there exists some z such that z2 = z0. We see that f(z−z2) =
z2 = f(z2). But f is one-to-one, so applying f−1 to both sides, z − z2 = z2. Thus, z = 2z2,

from which we get z = 1/2. Thus, 1/z0 = 1/z2 = 4 .
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5. Let p(x) = (x − m)k(x − n)6−k. Note that k cannot be even, as otherwise the coefficient
of x5 would be even. Hence, by symmetry, there are just two cases to check, where k = 1
(equivalent to k = 5) and k = 3. For k = 1, checking the coefficients of x5 and x4 respectively
gives m+ 5n = −3 and

−3 = 5mn+ 10n2 = 5n(m+ 2n) = 5n(−3− 3n),

so 5n(n + 1) = 1 which certainly has no integral solutions. For k = 3, we obtain respectively
3m+ 3n = −3 =⇒ m+ n = −1 and

−3 = 3m2 + 3n2 + 9mn = 3((m+ n)2 +mn) = 3(1 +mn) =⇒ mn = −2.

Hence, m and n are the roots to the quadratic q(x) = (x−m)(x−n) = x2−x−2 = (x−2)(x+1),

so {m,n} = {−2, 1}. Thus, p(x) = (x− 1)3(x+ 2)3, so the answer is p(2) = 13 · 43 = 64 .

6. First, note that the possible end states of the machine are {4, 2, 1} and {6, 3}, and that the
machine will invariably halve itself at most every other operation, since when m is odd then
the output m + 3 is even. Therefore, when operating in reverse order, the longest sequence
will be the one that halves exactly every other time. Since the ending period {1, 2, 4} is longer
than {6, 3} and obtains smaller values than 6, then {1, 2, 4} end will result in the longer chain.
Operating in reverse order, we can see that {1, 2, 4, 8, 5, 10, 7, 14, 11, 22, 19, 38, 35, 70, 67} is the

longest possible chain, and so the answer is 67 .

7. Rewrite the equation as an− an−1 = 5
6 (an−1− an−2) + 10

3 . Define another sequence {bn} such
that bn = an+1 − an. Thus, b1 = 1 and bn = 5

6bn−1 + 10
3 for n ≥ 2, and if we define {cn} such

that cn = bn − 20, then c1 = −19 and cn = 5
6cn−1 for n ≥ 2. Now

a2011 = a0 +
2010∑
n=1

(an − an−1) =
2010∑
n=1

bn =
2010∑
n=1

(cn + 20) = 2010 · 20 +
2010∑
n=1

cn

=
−19 ·

(
1−

(
5
6

)2010)
1− 5

6

+ 40200 ≈ −6 · 19 + 40200 = 40086 .

8. Let ζ = eiπ/3. Without loss of generality, let αi = ζi for each i from 1 to 6. Then we have
α3 = −1 and α6 = 1. Therefore, the equations f(α1, . . . , α6) = α3 +1 = 0 and g(α1, . . . , α6) =
α6 − 1 = 0 show that α3 and α6 must be fixed by any such permutation.

We also have that ζ + ζ5 = 1 and ζ2 + ζ4 = −1. Therefore we can see that f(α1, ..., α6) =
α1 + α5 − 1 = 0 and g(α1, ..., α6) = α2 + α4 + 1 = 0 are also polynomials of the desired form,
so these polynomials must also be zero upon permutation, and therefore (α2, α4) → (α2, α4)
or (α2, α4)→ (α4, α2). Similarly, (α1, α5)→ (α1, α5) or (α1, α5)→ (α5, α1).

Suppose α2 and α4 are fixed by a permutation that also swaps α5 and α1, and consider
the polynomial f(α1, ..., α6) = α2

1 − α2 = 0. This polynomial permutes to f(αi1 , ..., αi6) =
α2
5 − α2 = ζ10 − ζ2 6= 0. Similarly, the permutation that fixes α5 and α1 but reverses α2 and
α4 does not work due to the same polynomial as above. Finally, we need to show that the
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final two permutations do work. Clearly the identity permutation works. It remains to show
that the permutation that fixes the roots ±1 and swaps the pairs of roots (ζ, ζ5) and (ζ2, ζ4)
satisfies the conditions of the problem. This permutation is simply complex conjugation. Since
we know that P (α1, α2, α3, α4, α5, α6) = 0, we have

P (α1, α2, α3, α4, α5, α6) = P (α1, α2, α3, α4, α5, α6) = 0.

and thus both of these permutations work, and the answer is 2 .
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