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Algebra B Solutions

1. Since ®(7,1,3) = 73—1 =2 and ®(—3,—4,2) = 2_£_4) = —2, our answer is

3
e2-21=2"2 [

2. First Solution: We write 22 —21x+5 = (r—a)(z—b) = 22— (a+b)z+ab,soab =5, a+b =2
(or we could apply Vieta’s formulas). From these elementary symmetric polynomials, we can
find all of the power sums of the roots:

A +b*=(a+b?*—2ab=4—-10= —6
a* +b* = (a® +b*)* — 2a*b* = 36 — 50 = —14
a® 4+ = (a* +")? — 2a*p* =196 — 2 - 625 = —1054

Thus, the answer is | 1054 |.

Second Solution: By the quadratic equation, the roots of 2 — 2z + 5 = 0 are given by

p = VA4S 4 15 —1+42i=5- (\f + \2}> Note that these two roots are complex conjugates

of each other. By De Moivre’s formula,

8
la® + b8 = 2§R{\/5(:ist9} =2.5%cos 86,

where cos @ = 1/4/5. By three applications of the double-angle formula, cos 89 = 2(2(2 cos? 6 —

1212 —-1=28 —1==227 so [a® +b%| = 2527 = | 1054 |

Third Solution: As before, the two roots are 14 2i. Then, squaring three times, (1 + 2i)? =
—344i, (1+2i)* = —7— 244, (1 +2i)8 = —527 4 336i. Similarly, (1 — 2i)® = —527 — 336i (by
taking the conjugate of both sides), so |a® + 8| = 2 - 527 = | 1054 |.

3. By inspection, we see that 1 is a root of this polynomial. Factoring out (z — 1), we have
f(z) = (z — 1)(2® — 62 + 10). Since 22 — 62 + 10 = (x — 3)? + 1, then for any = < 0 or
x > 3, both |z — 1], |22 — 62 + 10| > 2, so their product cannot be prime. Trying directly,
f(0) = =10, f(1) = 0 are not prime. If x > 2, we need at least one of z — 1 and (z — 3)? + 1
to be equal to 1, so we only need to consider the cases * = 2 and x = 3. At both of these,
f(2) = f(3) = 2, so the sum of all distinct primes values taken on by f(x) is .

4. Substituting iz in the equation gives

—2% = fliz+ f(=2z + f(=iz + f(z + f(iz +...)))))-
We then have

fz=22) = flz+ fliz+ f(—2z+ f(—iz + fz+... = 2

for all complex z. In particular, there exists some z such that 22 = z;. We see that f(z—2%) =

2?2 = f(2?). But f is one-to-one, so applying f~! to both sides, z — 22 = 22. Thus, z = 222,

from which we get z = 1/2. Thus, 1/2z9 = 1/22 :.



PUMoC 2011

5. Let p(z) = (x — m)*(x — n)°~*. Note that k cannot be even, as otherwise the coefficient
of 2° would be even. Hence, by symmetry, there are just two cases to check, where k = 1
(equivalent to k = 5) and k = 3. For k = 1, checking the coefficients of % and z* respectively
gives m + 5n = —3 and

—3 = 5mn + 10n* = 5n(m + 2n) = 5n(—3 — 3n),

so 5n(n + 1) = 1 which certainly has no integral solutions. For k = 3, we obtain respectively
3m+3n=-3 = m+n=-1and

—3=3m?+3n% + 9mn = 3((m +n)?> +mn) =3(1 + mn) = mn = —2.

Hence, m and n are the roots to the quadratic ¢(z) = (x—m)(z—n) = 2> —2—2 = (z—2)(z+1),
so {m,n} = {—2,1}. Thus, p(z) = (z — 1)3(z + 2)3, so the answer is p(2) = 13- 43 = .

6. First, note that the possible end states of the machine are {4,2,1} and {6, 3}, and that the
machine will invariably halve itself at most every other operation, since when m is odd then
the output m + 3 is even. Therefore, when operating in reverse order, the longest sequence
will be the one that halves exactly every other time. Since the ending period {1, 2,4} is longer
than {6,3} and obtains smaller values than 6, then {1,2,4} end will result in the longer chain.
Operating in reverse order, we can see that {1,2,4,8,5,10,7,14,11,22,19, 38,35,70,67} is the
longest possible chain, and so the answer is .

7. Rewrite the equation as a,, — an_1 = %(an_l —ap_2)+ % Define another sequence {b,,} such
that b, = ap+1 — ap. Thus, by =1 and b, = %bn_l + %0 for n > 2, and if we define {¢,} such
that ¢, = b,, — 20, then ¢; = —19 and ¢, = %cn_l for n > 2. Now

2010 2010 2010 2010
azo11 = aop + Z(an —Qp-1) = Z b, = Z(Cn +20) = 2010 - 20 + Z Cn
n=1 n=1 n=1 n=1

_19. (1 _ (%)2010>
= — + 40200 ~ —6 - 19 + 40200 = [ 40086 |
6

8. Let ¢ = €'/3. Without loss of generality, let a; = ¢’ for each i from 1 to 6. Then we have
ag = —1 and ag = 1. Therefore, the equations f(aq,...,as) =az+1=0and g(ay,...,a8) =
ag — 1 = 0 show that as and ag must be fixed by any such permutation.

We also have that ¢ + (% = 1 and ¢% + (* = —1. Therefore we can see that f(ay,...,qq) =
a1+ a5 —1=0and g(ay,...,as) = @z + a4 + 1 = 0 are also polynomials of the desired form,
so these polynomials must also be zero upon permutation, and therefore (s, ay) — (a2, ay)
or (az,as) = (au, az). Similarly, (a1, a5) = (a1, a5) or (a1, a5) = (a5, a1).

Suppose s and «y4 are fixed by a permutation that also swaps a5 and a7, and consider
the polynomial f(aq,...,a6) = a2 — as = 0. This polynomial permutes to f(a,, ..., i) =
a2 —ag = (10— (? # 0. Similarly, the permutation that fixes a5 and a; but reverses ay and
a4 does not work due to the same polynomial as above. Finally, we need to show that the
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final two permutations do work. Clearly the identity permutation works. It remains to show
that the permutation that fixes the roots £1 and swaps the pairs of roots (¢,¢%) and (¢?,¢*)
satisfies the conditions of the problem. This permutation is simply complex conjugation. Since
we know that P(aq,as, a3, ay, as, ag) = 0, we have

and thus both of these permutations work, and the answer is .



