
Number Theory A Solutions

1. The sum of the divisors of n = 2i3j is equal to (1+21+22+· · ·+2i)(1+31+32+· · ·+3j) = 1815,
since each divisor of 2i3j is represented exactly once in the sum that results when the product
is expanded. Let A = 1 + 21 + 22 + · · ·+ 2i = 2i+1 − 1 and B = 1 + 31 + 32 + · · ·+ 3j , so that
AB = 1815 = 3 · 5 · 112.

Since B ≡ 1 (mod 3), 3|A. By Fermat’s Little Theorem, 2i+1 − 1 ≡ 0 (mod 3) only when i is
odd. For i = 1 we get A = 3, B = 605 which does not work. For i = 3 we get A = 15, B = 121,
which holds for j = 4 and n = 648 . For i = 5, 7, and 9, we obtain 7|A, 17|A, and 31|A
respectively (all of which do not divide 1815), and for i > 10, A > 1815.

2. Using the identity that lcm (m,n) · gcd (m,n) = m · n, it follows that

3m× gcd (m,n) = lcm (m,n) =
m · n

gcd (m,n)
=⇒ n = 3[gcd (m,n)]2.

It follows that n must be three times a perfect square. If we set m =
√
n/3, which is an

integer, it follows that

lcm (
√
n/3, n) = n = 3

√
n/3 ·

√
n/3 = 3

√
n/3 · gcd (

√
n/3, n),

as desired. Hence, every triple of a perfect square works as a value of n, and the largest such
under 1000 is 3 · 182 = 972 .

3. Note that 73 = 343 ≡ −1 (mod 43) and that 66 = (63)2 ≡ 1 (mod 43). Therefore, for
p ≡ 0, 1, 2, 3, 4, 5 (mod 6), 7p− 6p + 2 ≡ 2, 3, 15, 0, 32, 3 (mod 43). Therefore, if 43|7p− 6p + 2,

p ≡ 3 (mod 6). This means that p = 3 is the only solution, so that the sum of all solutions
is 3.

4. Let the set be {a, b, c}, and without loss of generality, suppose that a ≤ b ≤ c. Then

abc− 2a− 2b− 2c = 4.

If c ≥ b ≥ a ≥ 4, then

4 = abc− 2a− 2b− 2c ≥ 16c− 2c− 2c− 2c = 10c ≥ 40,

which is a contradiction. Thus, a ∈ {1, 2, 3}.
If a = 1, we get that bc−2b−2c = 6. Completing the rectangle, bc−2b−2c+4 = (b−2)(c−2) =
10. Thus, b − 2 and c − 2 are a pair of (positive) factors of 10, and so must be equal to 1, 10
or 2, 5. Thus, we get the solutions {a, b, c} = {1, 3, 12} and {1, 4, 7}, which can be permuted
in 12 ways (6 for each solution).

If a = 2, we get that 2bc − 2b − 2c = 8, so bc − b − c + 1 = (b − 1)(c − 1) = 5. Thus, b − 1
and c − 1 are a pair of factors of 5, and so must be equal to 1, 5. This gives the solution
{a, b, c} = {2, 2, 6}, which can be permuted in 3 ways.
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If a = 3, we get that 3bc − 2b − 2c = 10, so 9bc − 6b − 6c + 4 = (3b − 2)(3c − 2) = 34. Then
3b− 2, 3c− 2 are a pair of factors of 34 and (3b− 2, 3c− 2) = (1, 34), (2, 17). In the first pair
of solutions, we have b = 1 ≤ a = 3, and in the second pair of solutions, we do not get integer
values for b, c.

In total, we have 15 ordered triplets which satisfy the given conditions.

5. First, show that this sum converges by showing that d(n) ≤ 2
√
n for all n ≥ 1. Let x be some

divisor of n with x ≤
√
n. There is a one to one correspondence between divisors at most

√
n

and divisors at least
√
n (map x to n

x for any x ≤ n). However, there are at most
√
n divisors

of n that are at most
√
n, so d(n) ≤ 2

√
n for all positive integers n. Therefore, the given sum

is bounded above by
∞∑
n=1

2

x
3
2

which converges.

First solution: Note that d(n) =
∑
k|n

1, so
d(n)

n2
=
∑
k|n

1

k2(n/k)2
. This means that the desired

sum is equal to
∞∑
n=1

∑
k|n

1

k2(n/k)2
=
∞∑
k=1

∞∑
m=1

1

k2m2
.

This can be seen by letting m = n
k and switching the order of summation (which is valid by

the absolute convergence of the original series). Therefore, we can write this series as( ∞∑
m=1

1

m2

)2

=
π4

36
.

Hence p(x) = x4

36 and p(6) = 36 . p(x) is unique because π is transcendental.

Second solution: Since the original sum converges, one may use the unique prime factoriza-
tion of the integers and the fact that d(n) is multiplicative to factor the given sum as

∞∏
i=1

∞∑
j=0

d(pji )

p2ji

where pi is the ith prime. Note also that d(pj) = j + 1 for any prime p. Now, compute the
sum

S(x) =
∞∑
j=0

(j + 1)xj

To compute a closed form for S(x), consider xS(x) =
∑∞
j=1 jx

j and S(x)−xS(x) =
∑∞
j=0 x

j =

1
1−x for |x| < 1. Therefore, S(x) = 1

(1−x)2 =
(∑∞

j=0 x
j
)2

. Letting x = 1
pi

for each term of the
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infinite product shows that the desired sum is equal to (
∑∞
j=1

1
j2 )2 = π4

36 . Hence p(x) = x4

36

and p(6) = 36 .

6. In order to decrease the number of remainders (mod b) that can be written in the form x3+y4,
we should minimize the number of cubes and fourth powers (mod b). This happens when b is
prime and when 3, 4|b− 1, which happens when b = 13. Indeed, for this value of b, the cubic
residues are 0, 1, 5, 8 and 12 and the quartic residues are 0, 1, 3, and 9. 7 cannot be written as
the sum of any cubic-quartic residue pair, so (7, 13) satisfies the problem’s constraints.

Now, I will show that for any b < 13, all residues (mod b) can be written as a sum of a cubic-
quartic residue pair. We can reduce the checking to just prime values of b and powers of primes
by the Chinese Remainder Theorem. Therefore, we just need to check b = 1, 2, 3, 4, 5, 7, 8, 9, 11.
1, 2, and 3 are trivial to check, so just look at 4, 5, 7, 8, 9, 11. For 5, note that x4 ≡ 1 for
nonzero x, so x3 ≡ x−1. Everything is invertible (mod 5) (except 0), so x3 takes on all values
(mod 5). Very similar logic applies for 11, as x9 ≡ x−1 (mod 11) for all nonzero x, which
means that 9th powers take on all values (mod 11) (and therefore implies that the cubes take
on all values (mod 11)). For 7, note that x4 = x−2 (mod 7) for all nonzero x. This means x4

takes on the values of all squares (which are 0,1,2,4). The cubes equivalent to 1, 0,−1 (mod 7),
so just a little bit of checking shows that all residues modulo 7 are covered.

Now, we just have to check b = 4, 8, 9. 4 is easy to check. By Euler’s Theorem, x4 ≡ 1 (mod 8)
for all odd residues (mod 8), so x3 ≡ x−1 and the cubes cover all odd residues mod 8. Since
the quartic residues are 0 and 1, we cover everything. Finally, we just need to check b = 9.
For all invertible elements x, x4 ≡ x−2, so we cover all squares. The squares (mod 9) are 0,
1, 4, 7. The cubes contain 0, 1, and −1 so we hit everything. Therefore, (7, 13) is the solution

with smallest b. Thus the answer is 7 · 13 = 91 .

7. This sequence, which starts off as 1, 1, 1, 2, 3, 5, 21, 34, . . . contains many members of the Fi-
bonacci sequence. However, it is not the Fibonacci sequence. If {Fi}∞i=1 is the Fibonacci se-
quence with F0 = F1 = 1, then the g sequence can be written as 1, 1, F1, F2, F3, F4, F7, F8, ...,
which suggests that g2k = F2k−1 and g2k+1 = F2k for all positive integers k.

We prove this by induction. Since the initial conditions (g0 and g1) of the sequence are the same
as F1 and F2 respectively, the base case is complete. Therefore, assume that g2n = F2n−1 and
g2n+1 = F2n and consider g2n+2 in addition to g2n+3. The Fibonacci identities F2k = F 2

k+F 2
k−1

and F2k−1 = 2FkFk−1 − F 2
k−1 solve the inductive step.

For sake of completeness, we prove these identities in tandem by strong induction. For F2k =
F 2
k + F 2

k−1, we can check that the base case k = 1 is consistent with this identity (F2 =
2 = 1 + 1 = F 2

1 + F 2
0 ). For F2k−1 = 2FkFk−1 − F 2

k−1, the base case of k = 1 is verified by
F1 = 1 = 2(1)− 1 = 2F1F0 − F 2

0 , as desired. Therefore, we have completed the base case for
induction. For the inductive hypothesis, assume that

F2k−2 = F 2
k−1 + F 2

k−2 and F2k−3 = 2Fk−1Fk−2 − F 2
k−2.
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Note that

2FkFk−1 − F 2
k−1 = 2(Fk−1 + Fk−2)Fk−1 − F 2

k−1 = F 2
k−1 + 2Fk−1Fk−2

= (F 2
k−1 + F 2

k−2) + (2Fk−1Fk−2 − F 2
k−2).

By this equation and the inductive hypothesis,

2FkFk−1 − F 2
k−1 = (F 2

k−1 + F 2
k−2) + (2Fk−1Fk−2 − F 2

k−2) = F2k−2 + F2k−3 = F2k−1,

as desired. Now, we need to finish the inductive step for the other equation:

F 2
k + F 2

k−1 = (Fk−1 + Fk−2)2 + F 2
k−1 = 2F 2

k−1 + 2Fk−1Fk−2 + F 2
k−2

= 2(F 2
k−1 + F 2

k−2) + 2Fk−1Fk−2 − F 2
k−2.

By the inductive hypothesis,

F 2
k + F 2

k−1 = 2(F 2
k−1 + F 2

k−2) + 2Fk−1Fk−2 − F 2
k−2 = 2F2k−2 + F2k−3

= F2k−1 + F2k−2 = F2k,

as desired. Therefore, the induction is complete and both identities have been proven. (These
identities may also be proven by Binet’s formula or by matrix products.)

Now, consider the Fibonacci Sequence (mod 8) and (mod 27). The first terms of the Fi-
bonacci Sequence (mod 8) are 1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, . . . (repeat of the beginning) so the
period of the Fibonacci Sequence (mod 8) is 12. 2k ≡ 2k+2 (mod 12) for all k ≥ 2, so
g2011 = F21005 ≡ F8 ≡ 2 (mod 8). To calculate the period (mod 27), write out terms of the
sequence (1, 1, 2, 3, 5, 8, 13, 21, 7, 1, 8, 0, . . .). Note that F12 ≡ 0 (mod 27). Therefore, for all
indicies i such that 13 ≤ i ≤ 24, Fi ≡ 8Fi−12 (mod 27) since this part of the sequence is gen-
erated by F12 ≡ 0 and F13 ≡ 8 (mod 27). Therefore, F23 ≡ 64 ≡ 10 (mod 27). By the same
logic as before, Fi ≡ 10Fi−24 if 25 ≤ i ≤ 36. Therefore, F35 ≡ 80 ≡ −1 (mod 27). Therefore,
for all i such that 36 ≤ i ≤ 71, Fi ≡ −Fi−36 (mod 27), so F71 ≡ 1 (mod 27). Since F72 ≡ 0
(mod 27), the Fibonacci sequence repeats after 72 terms. There is no smaller period, as that
period would have to divide 36 or 24, even though we know that F35 ≡ −1 and F23 ≡ 10
(mod 27).

Now, 21002 = 8334 ≡ (−1)334 ≡ 1 (mod 9), so 21005 ≡ 8 (mod 72). Therefore, F21005 ≡ F8

(mod 27). Therefore, g2011 ≡ F8 ≡ 34 (mod 216), so the answer is 34 .

8. Note that
m∑
i=1

i3 =

(
m∑
i=1

i

)2

for all positive integers m. Therefore,

n∑
i=k+1

i3 =

(
n(n+ 1)

2

)2

−
(
k(k + 1)

2

)2

.
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The given equation therefore is the same as(
n(n+ 1)

2

)2

= (962(3))

(
k(k + 1)

2

)2

+ 482.

Since 482 divides the right side of this equation, 48|n(n+1)
2 , so we can write this equation as(

n(n+ 1)

96

)2

− 3 (k(k + 1))
2

= 1.

This is Pell’s equation. Therefore, n(n+1)
96 can be written as (2+

√
3)m+(2−

√
3)m

2 for any positive

integer m. Furthermore, k(k+ 1) = (2+
√
3)m−(2−

√
3)m

2
√
3

. Since k ≡ 0, 3 (mod 4), 4|k(k+ 1) and

8| (2+
√
3)m−(2−

√
3)m√

3
. Note that

(2 +
√

3)m − (2−
√

3)m√
3

≡ 2(3)b
m
2 c (mod 8)

for odd m (since all terms besides the last term in the expansion are divisible by 8). This
contradicts the fact that k(k + 1) is a multiple of 4, so m is even.

For even m, let m = 2p for some integer p. Then

n(n+ 1)

96
=

(2 +
√

3)m + (2−
√

3)m

2

is equivalent to

4n2 + 4n = 192((2 +
√

3)2p + (2−
√

3)2p) = 64
(√

3((2 +
√

3)p − (2−
√

3)p)
)2

+ 384.

Note that
√

3((2+
√

3)p−(2−
√

3)p) is a positive integer, so WLOG call it x. Then (2n+1)2 =
64x2+385, so from difference of squares (2n+1−8x)(2n+1+8x) = 5 ·7 ·11. The only positive
integer solutions to this equation are (n, x) = (96, 24) and (15, 3). 3 6=

√
3((2+

√
3)p−(2−

√
3)p)

for any p, but p = 2 yields the x = 24 case. Therefore, the only possible solution occurs when
n = 96. Plugging this into the original equation shows that k = 7 so the answer is 96+7 = 103 .

5


