
Algebra A Solutions

1. Let p(x) = (x − m)k(x − n)6−k. Note that k cannot be even, as otherwise the coefficient
of x5 would be even. Hence, by symmetry, there are just two cases to check, where k = 1
(equivalent to k = 5) and k = 3. For k = 1, checking the coefficients of x5 and x4 respectively
gives m+ 5n = −3 and

−3 = 5mn+ 10n2 = 5n(m+ 2n) = 5n(−3− 3n),

so 5n(n + 1) = 1 which certainly has no integral solutions. For k = 3, we obtain respectively
3m+ 3n = −3 =⇒ m+ n = −1 and

−3 = 3m2 + 3n2 + 9mn = 3((m+ n)2 +mn) = 3(1 +mn) =⇒ mn = −2.

Hence, m and n are the roots to the quadratic q(x) = (x−m)(x−n) = x2−x−2 = (x−2)(x+1),

so {m,n} = {−2, 1}. Thus, p(x) = (x− 1)3(x+ 2)3, so the answer is p(2) = 13 · 43 = 64 .

2. We first define a new sequence P (m,n) such that P (m,n) is the largest power of 2 that
divides S(m,n). The relation S(m,n) = S(m − 1, n)S(m,n − 1) implies that P (m,n) =
P (m,n− 1) + P (m− 1, n), which reminds us of the Pascal recurrence. The initial conditions
become

P (m, 1) = 0, P (1, 2n+ 1) = 0, P (1, 2) = 1, P (1, 4) = 2, and P (1, 6) = 1.

Since the numbers are reasonable at this point, one could potentially write out all 72 or so
entries for P (m,n), 1 ≤ m,n ≤ 7, fairly quickly, but there are more computationally-efficient
methods.

First Solution: Writing out the second row, P (2, 2) = P (2, 3) = 1, P (2, 4) = P (2, 5) =
3, P (2, 6) = P (2, 7) = 4. We take advantage of the fact that the Pascal recurrence is additive,
in the sense that if Pi(m,n) = Pi(m,n−1)+Pi(m−1, n) for i = 1, 2, . . ., then any linear com-
bination of the Pi’s also satisfies the same recurrence. Notice that

(
m+n−4
m−2

)
,
(
m+n−4
m−2

)
,
(
m+n−6
m−2

)
satisfy this recurrence, and that

P (m,n) =

(
m+ n− 4

m− 2

)
+ 2

(
m+ n− 6

m− 2

)
+

(
m+ n− 8

m− 2

)
for all 2 ≤ m,n ≤ 7 based on the initial conditions. Hence, P (7, 7) =

(
10
5

)
+ 2
(
8
5

)
+
(
6
5

)
= 370 .

Note that we only use the second row because the numbers are nicer. Essentially what we
are doing here is writing the grid as a sum of multiple shifted copies of Pascal’s triangle.
The second solution also uses the same technique, but uses shifted copies of Pascal’s triangles
rooted at the diagonal entries P (m,n) where m+ n = 9.

Second Solution: Computing, we have P (7, 7) = P (7, 6) + P (6, 7) = P (7, 5) + 2P (6, 6) +
P (7, 5), and continuing in this manner (say by induction), we can express P (7, 7) as a sum of
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the product of elements of the 5th row of Pascal’s triangle and P (k, 9 − k). Thus P (7, 7) =
P (7, 2) + 5P (6, 3) + 10P (5, 4) + 10P (4, 5) + 5P (3, 6) +P (2, 7). We can calculate these diagonal
entries P (k, 9 − k) fairly quickly from the inital conditions and the recurrence for P , and we
obtain a final answer of

1 · 4 + 5 · 12 + 10 · 16 + 10 · 12 + 5 · 5 + 1 · 1 = 370 .

3. First, note that the possible end states of the machine are {4, 2, 1} and {6, 3}, and that the
machine will invariably halve itself at most every other operation, since when m is odd then
the output m + 3 is even. Therefore, when operating in reverse order, the longest sequence
will be the one that halves exactly every other time. Since the ending period {1, 2, 4} is longer
than {6, 3} and obtains smaller values than 6, then {1, 2, 4} end will result in the longer chain.
Operating in reverse order, we can see that {1, 2, 4, 8, 5, 10, 7, 14, 11, 22, 19, 38, 35, 70, 67} is the

longest possible chain, and so the answer is 67 .

4. Vieta’s relations give us

a+ b+ c = 1

ab+ bc+ ca = b

abc = −c

From the last equation, (ab + 1)c = 0, so either c = 0 or ab = −1. If c = 0, we will have
(abc)2 = 0 regardless of the values of a and b. The other case is where c 6= 0, ab = −1
(in particular, a, b 6= 0). From the first two equations, we have ca = b(1 − a − c) = b2.

Because ab = −1, it follows that c = b3

ab = −b3. Hence, 1 = a + b + c = −1/b + b + −b3, so
b4 − b2 + b+ 1 = 0. We see that b = −1 is a root of this quartic, so factoring out (b+ 1), we
have that

b4 − b2 + b+ 1 = (b+ 1)(b3 − b2 + 1) = 0.

Since b3 − b2 + 1 = b2(b − 1) + 1 < −2b2 + 1 < 0 for b < −1, it follows that b = −1 is the
smallest possible real root of the quartic. Then abc = b3 ≥ (−1)3 = −1, which is achieved for

(a, b, c) = (1,−1, 1), and squaring, our answer is 1 .

5. Observe that f
(2)
1 (x) = f

(2)
2 (x) = x. So if h = fi1 ◦ . . . ◦ fik , then we can suppose the sequence

i1, . . . , ik alternates between 1 and 2. If k is odd, then i1 = ik, so

h(2)(x) = (fi1 ◦ . . . ◦ fik ◦ fi1 ◦ . . . ◦ fik)(x) = x.

If k is even, then either h = (f1 ◦ f2)(n) or h = (f2 ◦ f1)(n) for some n.

Calculating, we see that (f1 ◦ f2)(3)(x) = (f2 ◦ f1)(3)(x) = x. Therefore, N ≤ 2, and indeed

N = 2 because if h = f1 ◦ f2, then π, h(π), h(2)(π) are all distinct.

6. Rewrite the equation as an− an−1 = 5
6 (an−1− an−2) + 10

3 . Define another sequence {bn} such
that bn = an+1 − an. Thus, b1 = 1 and bn = 5

6bn−1 + 10
3 for n ≥ 2, and if we define {cn} such
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that cn = bn − 20, then c1 = −19 and cn = 5
6cn−1 for n ≥ 2. Now

a2011 = a0 +
2010∑
n=1

(an − an−1) =
2010∑
n=1

bn =
2010∑
n=1

(cn + 20) = 2010 · 20 +
2010∑
n=1

cn

=
−19 ·

(
1−

(
5
6

)2010)
1− 5

6

+ 40200 ≈ 40086 .

7. Let ζ = eiπ/3. Without loss of generality, let αi = ζi for each i from 1 to 6. Then we have
α3 = −1 and α6 = 1. Therefore, the equations f(α1, . . . , α6) = α3 +1 = 0 and g(α1, . . . , α6) =
α6 − 1 = 0 show that α3 and α6 must be fixed by any such permutation.

We also have that ζ + ζ5 = 1 and ζ2 + ζ4 = −1. Therefore we can see that f(α1, ..., α6) =
α1 + α5 − 1 = 0 and g(α1, ..., α6) = α2 + α4 + 1 = 0 are also polynomials of the desired form,
so these polynomials must also be zero upon permutation, and therefore (α2, α4) → (α2, α4)
or (α2, α4)→ (α4, α2). Similarly, (α1, α5)→ (α1, α5) or (α1, α5)→ (α5, α1).

Suppose α2 and α4 are fixed by a permutation that also swaps α5 and α1, and consider
the polynomial f(α1, ..., α6) = α2

1 − α2 = 0. This polynomial permutes to f(αi1 , ..., αi6) =
α2
5 − α2 = ζ10 − ζ2 6= 0. Similarly, the permutation that fixes α5 and α1 but reverses α2 and
α4 does not work due to the same polynomial as above. Finally, we need to show that the
final two permutations do work. Clearly the identity permutation works. It remains to show
that the permutation that fixes the roots ±1 and swaps the pairs of roots (ζ, ζ5) and (ζ2, ζ4)
satisfies the conditions of the problem. This permutation is simply complex conjugation. Since
we know that P (α1, α2, α3, α4, α5, α6) = 0, we have

P (α1, α2, α3, α4, α5, α6) = P (α1, α2, α3, α4, α5, α6) = 0.

and thus both of these permutations work, and the answer is 2 .

8. The existence and uniqueness of this polynomial (up to sign) are beyond the scope of this
contest, and as such we will take them for granted. Since all of the roots of x11− 1 are powers
of each other, we note that f(xk), reduced to a degree 10 polynomial by using α11

i = 1 for all
i, we see that this new polynomial f(xk) must also satisfy every condition of f(x). Therefore
since f is unique up to sign, this new polynomial is either −f(x) or f(x). Since the new
coefficient of x10 can be any of the cj ’s, we know that each each of the cj ’s is ±1.

Since f(1) = 1 + c9 + · · ·+ c1 = 0, we know that 5 of the cj ’s are −1, and the other 4 are +1.
Now, look at f(x)2. While this is a degree 20 polynomial, since again the only inputs we care
about all have the property that α11 = 1, we can restrict f(x)2 to a degree 10 polynomial by
simply identifying x11 with 1.

Thus our reduced polynomial looks like F (x) = B10x
10 + · · ·+B1x+B0. Note that since we

know the values of F (x) at all of the 11 roots of x11 − 1, by Lagrange Interpolation, F (x) is
uniquely determined. We can now perform the same trick we performed on f(x), by replacing
x with xk for 1 ≤ k ≤ 10, since all of the inputs we are interested in are powers of each other.
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As before, this will shuffle the coefficients of the polynomial, and will send B10 to each of the
other Bi’s that are non-constant. Therefore B1 = B2 = ... = B10. We also know that f(1) = 0,
so F (1) = 0 as well, and we are given that F (αi) = −11. From these facts, we obtain the
following equations:

10B1 +B0 = 0 and B1(α+ α2 + · · ·+ α10) +B0 = −11.

Since 1 + α+ · · ·+ α10 = 0, the second equation becomes B0 −B1 = −11, and the solution to
these two equations is (B0, B1) = (−10, 1). However, the only way the constant term of F (x)
can be −10 is if the coefficient of x11 in f(x)2 is −10, and the only way this can occur is if
every pair of coefficients that multiplies to form an x11 term has opposite sign. Therefore f(x)
is anti-symmetric, so c1 = −1, c2c9 = −1, c3c8 = −1, c4c7 = −1, c5c6 = −1, and the answer is
15 .
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