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Combinatorics B Solutions

1. The Princeton University Band plays a setlist of 8 distinct songs, 3 of which are difficult to
play. If the Band can’t play any two difficult songs in a row, how many ways can the band
play its 8 songs?

Answer:

Solution: There are 5! = 120 ways to choose an ordering for the songs that are not difficult
to play. Then the setlist is S % .S % .S % .S % Sx, where S represents a song that is not difficult
to play, and * represents a space in the setlist that can either be left empty, or filled with
one difficult song. There are (g) = 20 ways to choose 3 of these spaces for the difficult songs,
and 3! = 6 ways to choose which difficult song to put in each space. Therefore, the answer is

120 -20 -6 =| 14400 |.

2. PUMaCDonalds, a newly-opened fast food restaurant, has 5 menu items. If the first 4 cus-
tomers each choose one menu item at random, the probability that the 4th customer orders a
previously unordered item is m/n, where m and n are relatively prime positive integers. Find
m+n.

Answer: | 189

Solution: Number the menu items 1 through 5. Without loss of generality, assume the 4th
customer orders menu item 1. Then the desired probability is the probability that each of
the first 3 customers do not order menu item 1, which is (4/5)% = 64/125. The answer is

64 +125 =[189].

3. Let wyz represent the three-digit number with hundreds digit z, tens digit y, and units digit
z, and similarly let yz represent the two-digit number with tens digit y and units digit z. How
many three-digit numbers abc, none of whose digits are 0, are there such that ab > bc > ca?

Answer: | 120

Solution: If one two-digit number is greater than another, then the tens digit of the first num-
ber must be greater than or equal to the tens digit of the second number. Therefore, if abc
satisfies the given condition, then a > b > ¢. Now note that if b = ¢, then since ¢ < a, we have
bc < ca, a contradiction. Therefore, a > b > c¢. Conversely, if a > b > ¢, then we can easily
see that abc satisfies the given condition. Therefore, the problem is equivalent to finding the
number of ordered pairs (a, b, ¢) of integers between 1 and 9 such that a > b > c.

If a = b > ¢, we can produce all such (a, b, c) by choosing 2 of the integers between 1 and 9,
and setting a and b equal to the larger integer, and ¢ equal to the smaller integer. If a > b > ¢,
we can produce all such (a, b, ¢) by choosing 3 of the integers between 1 and 9, and setting a
equal to the largest integer, b equal to the middle integer, and ¢ equal to the smallest integer.
Therefore the answer is (3) + (3) = 36 + 84 =[120]
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4. Sterling draws 6 circles on the plane, which divide the plane into regions (including the un-
bounded region). What is the maximum number of resulting regions?

Answer:

Solution: Let R(n) be the greatest number of regions that n circles can divide the plane into.
We want to calculate R(n + 1) in terms of R(n).

Suppose we have drawn n circles on the plane, dividing the plane into r regions. Suppose
we draw another circle, forming k intersection points with the existing circles. If k£ = 0, then
there are no intersection points, and the resulting number of regions is r + 1. Otherwise, the k
intersection points divide the new circle into k arcs. Each arc divides an existing region into
two regions, so the resulting number of regions is r + k. Since the new circle intersects each
other circle at most twice, we have k < 2n. By definition, » < R(n), so the resulting number
of regions is at most R(n) + 2n.

To show that this maximum is attainable, we need to produce a set of n + 1 circles such that
every pair of circles intersects twice, and every intersection point is distinct. It should be
easy for the reader to convince himself or herself that there is such a set for all n +1 < 6 by
drawing circles on paper. Therefore R(n + 1) = R(n) 4+ 2n for all n < 5. We can easily see

that R(1) = 2. Repeatedly applying the recursive equation, we obtain R(6) = .

For a solution that doesn’t require drawing circles on paper that look like they intersect prop-
erly, we can prove the following statement:

Claim: For all m, there exists a set of m circles such that every pair of circles intersects twice,
and every intersection point is distinct.

Proof: Take a regular m-gon, and let s be the radius of the circumcircle of the m-gon. Put
m circles at the vertices of the m-gon, all with the same radius, and let the common radius
be greater than s. For two circles of the same radius to intersect twice, it is sufficient for the
common radius to be greater than half the distance between the centers of the circles. Since
the distance between the centers of any two of these circles is at most 2s, the diameter of the
circumcircle, and since the common radius is greater than s, every pair of circles intersects
twice. Now suppose for contradiction that some three circles pass through the same point P.
Then P is equidistant from three distinct points on the circumcircle of the m-gon, so P is the
circumcenter of the triangle formed by these three points and thus the circumcenter of the
m-gon. But then the distance between P and the three points is s. Since the common radius
is greater than s, P is not on any of the circles, a contradiction. Therefore, every intersection
point is distinct. Therefore, such a set of circles exists for all m.

5. 3n people take part in a chess tournament: n girls and 2n boys. Each participant plays with
each of the others exactly once. There were no ties and the number of games won by the girls
is 7/5 the number of games won by the boys. How many people took part in the tournament?
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Answer: @
7

Solution: The number of games won by the girls is 7/12 the total number of games, or 15 (32”)

2) games, since a girl must win any game between two girls. The
girls can win at most (%) — (%) games, since a boy must win any game between two boys.

Therefore, we have
n 7 (3n 3n 2n
< — < —
2) 712\ 2 )~ \ 2 2
n(n—1) < 7 3n(3n-—1) < 3n(Bn—1) 2n(2n-1)
2 12 2 - 2 2
dn(n—1) <™(3n—1) <12n(3n —1) — 8n(2n — 1)
4n? —4n < 21n® — Tn < 20n% — 4n

0 < 17n% — 3n < 16n2

The girls must win at least (

The first part of this inequality holds for all n, but the second part implies that n? < 3n,
so n < 3. We also know that the total number of games, % is divisible by 12. Then
3n(3n — 1) is divisible by 24, so n(3n — 1) is divisible by 8. Since n and 3n — 1 have different

parity, one of n,3n — 1 is divisible by 8. Therefore, n = 3, so that 3n = 9.

6. A regular pentagon is drawn in the plane, along with all its diagonals. All its sides and
diagonals are extended infinitely in both directions, dividing the plane into regions, some of
which are unbounded. An ant starts in the center of the pentagon, and every second, the ant
randomly chooses one of the edges of the region it’s in, with an equal probability of choosing
each edge, and crosses that edge into another region. If the ant enters an unbounded region, it
explodes. After first leaving the central region of the pentagon, let x be the expected number
of times the ant re-enters the central region before it explodes. Find the closest integer to
100z.

Answer:

Solution: Color the regions black and white like a chessboard, where the center region is white,
so that no two regions sharing an edge are the same color. The ant moves alternately between
black and white regions, so we can consider the ant’s movement two steps at a time, essentially
ignoring the black regions.

The white regions consist of the central region, five similar “edge” sections, and some un-
bounded regions. Let C' be the expected number of times the ant re-enters the central region,
starting from the central region, and let E be the expected number of times the ant re-enters
the central region, starting from one of the edge regions (by symmetry, E is the same for all
five edge regions). If the ant starts in the central region, there is a 1/3 probability it returns
to the central region in 2 steps, otherwise it moves to an edge region. If the ant starts in an
edge region, there is a 2/9 probability it moves to the center in 2 steps, a 5/9 probability it
returns to an edge in 2 steps, and a 2/9 chance it explodes within the next 2 steps. Therefore,
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1 2

C = J0+0)+E
2 5

E = 1+C)+E

Solving yields C =2, E = 3/2, so x = C' = 2, and therefore the answer is .

7. We say that a rook is “attacking” another rook on a chessboard if the two rooks are in the
same row or column of the chessboard. Let n be the maximum number of rooks that can be
placed on a 6 x 6 chessboard such that each rook is attacking at most one other. How many
ways can n rooks be placed on a 6 x 6 chessboard such that each rook is attacking at most
one other?

Answer:

Solution: Consider the following arrangement of rooks, where an R represents a rook:

R|R

R

In this arrangement, each rook attacks at most one other, so n > 8. Suppose there is such an
arrangement of 9 rooks. Each row has at most 2 rooks, so there must be some 3 rows with
exactly 2 rooks each. Call these 6 rooks “strong.”

Suppose there are two strong rooks in the same column of the chessboard. Then these rooks
each attack both each other and the strong rooks they share a row with, a contradiction.
Therefore, the strong rooks all occupy different columns, so there is a strong rook in each
column. Since there are only 6 strong rooks, there must be some rook R on the chessboard
that is not strong. Take the strong rook that is in the same column as R. This strong rook
attacks both R and the strong rook it shares a row with, a contradiction. Therefore there is
no such arrangement of 9 rooks, so n = 8.

Consider arrangements of 8 rooks. Since each row has at most 2 rooks, there are exactly 2
rows with 2 rooks and 4 rows with 1 rook. Similarly, there are exactly 2 columns with 2 rooks
and 4 columns with 1 rook. The rooks in the rows with 2 rooks must have their own columns,
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so these are the 4 columns with 1 rook. Call these 4 rooks the “row” rooks. Similarly, the
rooks in the columns with 2 rooks are the rooks in the rows with 1 rook. Call these 4 rooks
the “column” rooks.

Therefore we can produce an arrangement by choosing the 2 rows that are to have 2 rooks and
the 2 columns that are to have 2 rooks. The row rooks are in these 2 rows and in the other
4 columns, and the column rooks are in these 2 columns and in the other 4 rows. We finish
constructing the arrangement by choosing 2 of the other 4 columns to contain the upper-most
row of row rooks and 2 of the other 4 rows to contain the left-most column of column rooks.

Therefore the answer is (g)Q(;)Q = .

8. Matt is asked to write the numbers from 1 to 10 in order, but he forgets how to count. He
writes a permutation of the numbers {1,2,3...,10} across his paper such that:

(a) The leftmost number is 1.
(b) The rightmost number is 10.

(c) Exactly one number (not including 1 or 10) is less than both the number to its immediate
left and the number to its immediate right.

How many such permutations are there?

Answer:

Solution: Consider the ”changes of direction” of the sequence of numbers. It must switch
from decreasing to increasing exactly once by (3). By (1) and (2) it must start and end as
increasing. Therefore the sequence must go from increasing to decreasing to increasing.

Let a be the unique number that’s less than both its neighbors, corresponding to the switch
from decreasing to increasing, and let b be the unique number that’s greater than both its
neighbors, corresponding to the switch from increasing to decreasing. Then the sequence is of
the form 1,...,b,...,a,...,10, where 1 < a < b < 10, and the sequence is monotonic between
1 and b, between b and a, and between a and 10.

If we fix @ and b, then the sequence is uniquely determined by the sets of numbers in each
of the three dotted sections. In other words, we simply have to choose which of the three
sections to place each of the remaining numbers. The numbers between 1 and a must go to
the left of b, and the numbers between b and 10 must go to the right of a. The numbers
between a and b can go in any of the three sections. For example, if a = 2, b = 8, and we
divide the numbers between a and b into the sets {4,6}, {3}, {5, 7}, then we obtain the unique
permutation 1,4,6,8,3,2,5,7,9,10. Therefore the number of permutations is

N = Z 3b—a—1

1<a<b<10
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Foreach 1 <n <7,if b—a=mn,then 1l <a=5b—n < 10— n, so there are 8 — n possible
values of a, each of which uniquely determines a value of b. Therefore,

6

7
N=> (8-n)3""'=> (T-n)3"

n=0

Multiplying the first expression above by 3, we obtain

7
BN =Y (8-n)3"
n=1
Subtracting, we obtain

6
2N = (8-7)37—(7-0)30+> 3"

n=1

7
= 7T+ 3"
n=1

6
= —7T+3) 3"
n=0
37 -1
= —7+3.
3T
= 3272

SON:.



