
Algebra B Solutions

1. Let the operation F be defined by xFy = yx − x ∗ y. Calculate (3F4)− (4F3).

Solution: -17. We have (3F4)− (4F3) = (64− 12)− (81− 12) = −17.

2. Let p(x) = x2 + x + 1. Find the fourth smallest prime q such that p(x) has a root mod q.

Solution: 19. One can check that there are roots mod 3, 7, 13, and 19, and no others for
smaller primes.

3. Write 1
5√2−1

= a + b 5
√

2 + c 5
√

4 + d 5
√

8 + e 5
√

16, with a, b, c, d, and e integral. Find a2 + b2 +
c2 + d2 + e2.

Solution: 5. By multiplying both sides by 5
√

2− 1 and noting that the numbers 1, 5
√

2 = 21/5,
5
√

4 = 22/5, 5
√

8 = 23/5, and 5
√

16 = 24/5 are all linearly independent over Q, we can set up five
equations for five unknowns, whose solution is a = b = c = d = e = 1.

4. Find the nearest integer to the sum of all x where 4x = x4.

Solution: 5. We immediately see two solutions, 2 and 4, and that there can be no more positive
roots. There must be a negative root, however: let f(x) = 4x and g(x) = x4; then g(0) = 0
and f(0) = 1, but g goes off to infinity as x → −∞ and f goes to 0 as x → ∞. Plugging in
x = −1, we have f(−1) = 1/4 and g(x) = 1; plugging in x = −1/2 we have f(−1/2) = 1/2
and g(x) = 1/16. Therefore the root is between −1/2 and −1, and the nearest integer to the
sum of the roots must be 5.

5. Let x be a real root of the polynomial p(x) = x3 − 3x + 3. Find x9 + 81x2.

Solution: This problem has been redacted. There is no integral solution to this problem.

6. Define f(x) = x +

√
x +

√
x +

√
x +
√

x + . . .. Find the smallest integral x such that f(x) ≥
50
√

x.

Solution: 2400. Noting that (f(x)− x)2 = f(x), we can solve the quadratic equation for f(x)
to get that

f(x) = x +
1
2
±
√

x +
1
4
.

We clearly have to take the positive root (we can notice, for example, that f(1) > 1). The
problem therefore reduces to finding the smallest integral x such that

x +
1
2

+

√
x +

1
4
≥ 50

√
x.

It is simple to note that x has to be fairly large for this to be satisfied (after trying the trivial

x = 1). For large x,
√

x + 1
4 is very, very close to

√
x, so we can rewrite this as

x +
1
2
≥ 49

√
x.

1



The above is again rewritten as

x2 − 2400x +
1
4
≥ 0.

The smallest integer x satisfying the above is obviously 2400, and since the margin of error
here is 1

4 , our previous approximation is justified.

Of note is that this problem is cooked: the value x = 0 is also a valid solution. We accepted
either solution.

7. Let f be a function such that f(x) + f(x + 1) = 2x and f(0) = 2010. Find the last two digits
of f(2010).

Solution: 51. We have the sequence of equations

f(x) + f(x + 1) = 2x

f(x + 1) + f(x + 2) = 2x+1 = 2 · 2x

· · ·
f(x + n− 1) + f(x + n) = 2x+n−1 = 2n−1 · 2x.

Adding and subtracting alternate lines, we get a telescoping sum:

f(x) + (−1)n+1f(x + n) = 2x
n−1∑
k=0

2k(−1)k = 2x
n−1∑
k=0

(−2)k = 2x
(

1− (−2)n

3

)
.

Plug in x = 0 and n = 2010, so

f(2010) =
22010 − 1

3
+ 2010.

The last two digits of 22010 are 24 (using Euler’s theorem with n = 25, we have 220 = 1 mod
25, so 22000 = 1 mod 25, so 22010 = 210 mod 25, so 22010 = 24 mod 100). Therefore the
expression (22010 − 1)/3 has last digits 41, so overall the last two digits are 51.

8. The expression sin 2◦ sin 4◦ sin 6◦ · · · sin 90◦ is equal to p
√

5/250, where p is an integer. Find p.

Solution: 192. Let ω be the root of unity e2πi/90, so we have

45∏
n=1

sin(2n◦) =
45∑
n=1

ωn − 1
2iωn/2

.

By the symmetry of the sine (and the fact that sin(90◦) = 1),

45∏
n=1

sin(2n◦) =
89∏

n=46

sin(2n◦),

so ∣∣∣∣∣
45∏
n=1

sin(2n◦)

∣∣∣∣∣
2

=
89∑
n=1

|ωn − 1|
2

=
90
289

,
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where we’ve used the usual geometric series sum for roots of unity. The product is clearly
positive and real, so it is equal to √

45
244

=
3
√

5
244

,

implying that p = 3 · 26 = 192.
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