PUMαC 2010

Number Theory A

- 1. Find the smallest positive integer n such that $n^4 + (n+1)^4$ is composite.
- 2. Find the largest positive integer n such that $\sigma(n) = 28$, where $\sigma(n)$ is the sum of the divisors of n, including n.
- 3. Find the sum of the first 5 positive integers n such that $n^2 1$ is the product of 3 distinct primes.
- 4. Find the largest positive integer n such that $n\varphi(n)$ is a perfect square. $(\varphi(n)$ is the number of integers $k, 1 \le k \le n$ that are relatively prime to n)
- 5. Given that x, y are positive integers with x(x+1)|y(y+1), but neither x nor x+1 divides either of y or y+1, and x^2+y^2 as small as possible, find x^2+y^2 .
- 6. Find the numerator of

$$\frac{1010 \overline{11 \dots 11} \ 0101}{1100 \underline{11 \dots 11} \ 0011}$$

when reduced.

- 7. Let n be the number of polynomial functions from the integers modulo 2010 to the integers modulo 2010. n can be written as $n = p_1 p_2 \cdots p_k$, where the p_i s are (not necessarily distinct) primes. Find $p_1 + p_2 + \cdots + p_n$.
- 8. A consecutive pythagorean triple is a pythagorean triple of the form $a^2 + (a+1)^2 = b^2$, a and b positive integers. Given that a, a+1, and b form the third consecutive pythagorean triple, find a.