
Combinatorics A Solutions

1. PUMaCDonalds, a newly-opened fast food restaurant, has 5 menu items. If the first 4 cus-
tomers each choose one menu item at random, the probability that the 4th customer orders a
previously unordered item is m/n, where m and n are relatively prime positive integers. Find
m + n.

Answer: 189

Solution: Number the menu items 1 through 5. Without loss of generality, assume the 4th
customer orders menu item 1. Then the desired probability is the probability that each of
the first 3 customers do not order menu item 1, which is (4/5)3 = 64/125. The answer is
64 + 125 = 189 .

2. Let xyz represent the three-digit number with hundreds digit x, tens digit y, and units digit
z, and similarly let yz represent the two-digit number with tens digit y and units digit z. How
many three-digit numbers abc, none of whose digits are 0, are there such that ab > bc > ca?

Answer: 120

Solution: If one two-digit number is greater than another, then the tens digit of the first num-
ber must be greater than or equal to the tens digit of the second number. Therefore, if abc
satisfies the given condition, then a ≥ b ≥ c. Now note that if b = c, then since c ≤ a, we have
bc ≤ ca, a contradiction. Therefore, a ≥ b > c. Conversely, if a ≥ b > c, then we can easily
see that abc satisfies the given condition. Therefore, the problem is equivalent to finding the
number of ordered pairs (a, b, c) of integers between 1 and 9 such that a ≥ b > c.

If a = b > c, we can produce all such (a, b, c) by choosing 2 of the integers between 1 and 9,
and setting a and b equal to the larger integer, and c equal to the smaller integer. If a > b > c,
we can produce all such (a, b, c) by choosing 3 of the integers between 1 and 9, and setting a
equal to the largest integer, b equal to the middle integer, and c equal to the smallest integer.
Therefore the answer is

(
9
2

)
+
(
9
3

)
= 45 + 120 = 120 .

3. Sterling draws 6 circles on the plane, which divide the plane into regions (including the un-
bounded region). What is the maximum number of resulting regions?

Answer: 32

Solution: Let R(n) be the greatest number of regions that n circles can divide the plane into.
We want to calculate R(n + 1) in terms of R(n).

Suppose we have drawn n circles on the plane, dividing the plane into r regions. Suppose
we draw another circle, forming k intersection points with the existing circles. If k = 0, then
there are no intersection points, and the resulting number of regions is r + 1. Otherwise, the k
intersection points divide the new circle into k arcs. Each arc divides an existing region into
two regions, so the resulting number of regions is r + k. Since the new circle intersects each
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other circle at most twice, we have k ≤ 2n. By definition, r ≤ R(n), so the resulting number
of regions is at most R(n) + 2n.

To show that this maximum is attainable, we need to produce a set of n + 1 circles such that
every pair of circles intersects twice, and every intersection point is distinct. It should be
easy for the reader to convince himself or herself that there is such a set for all n + 1 ≤ 6 by
drawing circles on paper. Therefore R(n + 1) = R(n) + 2n for all n ≤ 5. We can easily see
that R(1) = 2. Repeatedly applying the recursive equation, we obtain R(6) = 32 .

For a solution that doesn’t require drawing circles on paper that look like they intersect prop-
erly, we can prove the following statement:

Claim: For all m, there exists a set of m circles such that every pair of circles intersects twice,
and every intersection point is distinct.

Proof: Take a regular m-gon, and let s be the radius of the circumcircle of the m-gon. Put
m circles at the vertices of the m-gon, all with the same radius, and let the common radius
be greater than s. For two circles of the same radius to intersect twice, it is sufficient for the
common radius to be greater than half the distance between the centers of the circles. Since
the distance between the centers of any two of these circles is at most 2s, the diameter of the
circumcircle, and since the common radius is greater than s, every pair of circles intersects
twice. Now suppose for contradiction that some three circles pass through the same point P .
Then P is equidistant from three distinct points on the circumcircle of the m-gon, so P is the
circumcenter of the triangle formed by these three points and thus the circumcenter of the
m-gon. But then the distance between P and the three points is s. Since the common radius
is greater than s, P is not on any of the circles, a contradiction. Therefore, every intersection
point is distinct. Therefore, such a set of circles exists for all m.

4. Erick stands in the square in the 2nd row and 2nd column of a 5 by 5 chessboard. There are
$1 bills in the top left and bottom right squares, and there are $5 bills in the top right and
bottom left squares, as shown below.

$1 $5

E

$5 $1

Every second, Erick randomly chooses a square adjacent to the one he currently stands in (that
is, a square sharing an edge with the one he currently stands in) and moves to that square.
When Erick reaches a square with money on it, he takes it and quits. The expected value of
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Erick’s winnings in dollars is m/n, where m and n are relatively prime positive integers. Find
m + n.

Answer: 18

Solution: In each square, we write the expected value of Erick’s winnings starting from that
square. From any square in the middle column, Erick has an equal probability of ending in
the top left and top right squares, and an equal probability of ending in the bottom left and
bottom right squares, by symmetry. Therefore, the total probability of Erick ending in a $1
square is the same as the total probability of Erick ending in a $5 square, so both probabilities
are 1/2, and therefore Erick’s expected winnings from any square in the middle column are
$3. By an analogous argument, Erick’s expected winnings from any square in the middle row
is $3. Let x be the expected value of Erick’s winnings starting from the 2nd row and 2nd
column, and let y be the expected value of Erick’s winnings starting from either the 1st row
and 2nd column, or the 2nd row and 1st column, since these expected values are the same by
symmetry.

$1 y $3 $5

y x $3

$3 $3 $3 $3 $3

$3

$5 $3 $1

Then we have a system of equations:

x =
1
2
· y +

1
2
· 3

y =
1
3
· x +

1
3
· 1 +

1
3
· 3

Solving yields x = 13/5, so the answer is 18 .

5. We say that a rook is “attacking” another rook on a chessboard if the two rooks are in the
same row or column of the chessboard and there is no piece directly between them. Let n be
the maximum number of rooks that can be placed on a 6× 6 chessboard such that each rook
is attacking at most one other. How many ways can n rooks be placed on a 6× 6 chessboard
such that each rook is attacking at most one other?

Answer: 8100

Solution: Consider the following arrangement of rooks, where an R represents a rook:
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R R

R R

R

R

R

R

In this arrangement, each rook attacks at most one other, so n ≥ 8. Suppose there is such an
arrangement of 9 rooks. Each row has at most 2 rooks, so there must be some 3 rows with
exactly 2 rooks each. Call these 6 rooks “strong.”

Suppose there are two strong rooks in the same column of the chessboard. Then these rooks
each attack both each other and the strong rooks they share a row with, a contradiction.
Therefore, the strong rooks all occupy different columns, so there is a strong rook in each
column. Since there are only 6 strong rooks, there must be some rook R on the chessboard
that is not strong. Take the strong rook that is in the same column as R. This strong rook
attacks both R and the strong rook it shares a row with, a contradiction. Therefore there is
no such arrangement of 9 rooks, so n = 8.

Consider arrangements of 8 rooks. Since each row has at most 2 rooks, there are exactly 2
rows with 2 rooks and 4 rows with 1 rook. Similarly, there are exactly 2 columns with 2 rooks
and 4 columns with 1 rook. The rooks in the rows with 2 rooks must have their own columns,
so these are the 4 columns with 1 rook. Call these 4 rooks the “row” rooks. Similarly, the
rooks in the columns with 2 rooks are the rooks in the rows with 1 rook. Call these 4 rooks
the “column” rooks.

Therefore we can produce an arrangement by choosing the 2 rows that are to have 2 rooks and
the 2 columns that are to have 2 rooks. The row rooks are in these 2 rows and in the other
4 columns, and the column rooks are in these 2 columns and in the other 4 rows. We finish
constructing the arrangement by choosing 2 of the other 4 columns to contain the upper-most
row of row rooks and 2 of the other 4 rows to contain the left-most column of column rooks.

Therefore the answer is
(
6
2

)2(4
2

)2
= 8100 .

6. All the diagonals of a regular decagon are drawn. A regular decagon satisfies the property
that if three diagonals concur, then one of the three diagonals is a diameter of the circumcircle
of the decagon. How many distinct intersection points of diagonals are in the interior of the
decagon?

Answer: 161
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Solution: First we classify the intersection points. There are points on exactly 2 lines, points
on exactly 3 lines, and the center of the decagon, which is on all 5 diameters. To prove there
are no other points, suppose a point other than the center is on at least 4 lines. The point is
on a diameter by the given property. Let the vertices of the decagon be P1, · · · , P10 clockwise
around the decagon, such that the point is on P1P6. Now consider all the intersection points
on P1P6. Given a diagonal PiPj that intersects P1P6, let f(PiPj) be the intersection point.
Then the intersection points on P1P6 between P1 and the center of the decagon are

f(P2P10), f(P2P9) = f(P3P10), f(P2P8) = f(P4P10), f(P3P9)

Of these points, f(P2P10) is the closest to P1, and f(P2P9) = f(P3P10) is the next closest to
P1. The other two points are clearly further from P1. Therefore, our point can only exist if
these other two points are the same point, so that f(P2P8) = f(P4P10) = f(P3P9). But by
symmetry, P2P8 and P3P9 intersect on the diameter of the circumcircle of the decagon that
is perpendicular to P1P10 and P5P6. Therefore, if our point exists, then it is on two different
diameters of the circumcircle of the decagon, so our point is the center of the decagon, a con-
tradiction. Therefore our original classification of points was correct.

Now we take a PIE-like approach to count the intersection points. Each set of four points
corresponds to exactly one intersection point, contributing

(
10
4

)
= 210 intersection points.

However, we have overcounted, since some of these intersection points are actually the same
point.

Consider intersection points of exactly three diagonals. By the given property, one diagonal is
a diameter, and the other two diagonals are reflections of each other over the diameter, since
otherwise we could reflect the diagonals over the diameter to get more diagonals that pass
through the same point. We can produce such an intersection point by choosing a diameter
and two of the four points on one side of the diameter, taking the corresponding two points on
the other side of the diameter, and drawing the resulting diagonals. There are 5

(
4
2

)
= 30 such

diagonals. Each of the 3-line diagonals was counted
(
3
2

)
= 3 times, so we need to subtract 60.

At this point, we’ve only miscounted the center. We counted it
(
5
2

)
= 10 times in the first step,

and we counted it 5 · 2 = 10 times in the second step, which we actually subtracted twice, so
we’ve counted it −10 times total. Therefore, we need to add 11.

Therefore, the answer is 210− 60 + 11 = 161 .

7. Matt is asked to write the numbers from 1 to 10 in order, but he forgets how to count. He
writes a permutation of the numbers {1, 2, 3 . . . , 10} across his paper such that:

(a) The leftmost number is 1.

(b) The rightmost number is 10.

(c) Exactly one number (not including 1 or 10) is less than both the number to its immediate
left and the number to its immediate right.
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How many such permutations are there?

Answer: 1636

Solution: Consider the ”changes of direction” of the sequence of numbers. It must switch
from decreasing to increasing exactly once by (3). By (1) and (2) it must start and end as
increasing. Therefore the sequence must go from increasing to decreasing to increasing.

Let a be the unique number that’s less than both its neighbors, corresponding to the switch
from decreasing to increasing, and let b be the unique number that’s greater than both its
neighbors, corresponding to the switch from increasing to decreasing. Then the sequence is of
the form 1, . . . , b, . . . , a, . . . , 10, where 1 < a < b < 10, and the sequence is monotonic between
1 and b, between b and a, and between a and 10.

If we fix a and b, then the sequence is uniquely determined by the sets of numbers in each
of the three dotted sections. In other words, we simply have to choose which of the three
sections to place each of the remaining numbers. The numbers between 1 and a must go to
the left of b, and the numbers between b and 10 must go to the right of a. The numbers
between a and b can go in any of the three sections. For example, if a = 2, b = 8, and we
divide the numbers between a and b into the sets {4, 6}, {3}, {5, 7}, then we obtain the unique
permutation 1, 4, 6, 8, 3, 2, 5, 7, 9, 10. Therefore the number of permutations is

N =
∑

1<a<b<10

3b−a−1

For each 1 ≤ n ≤ 7, if b − a = n, then 1 < a = b − n < 10 − n, so there are 8 − n possible
values of a, each of which uniquely determines a value of b. Therefore,

N =
7∑

n=1

(8− n)3n−1 =
6∑

n=0

(7− n)3n

Multiplying the first expression above by 3, we obtain

3N =
7∑

n=1

(8− n)3n
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Subtracting, we obtain

2N = (8− 7)37 − (7− 0)30 +
6∑

n=1

3n

= −7 +
7∑

n=1

3n

= −7 + 3
6∑

n=0

3n

= −7 + 3 · 37 − 1
3− 1

= 3272

and so N = 1636 .

8. Let N be the sum of all binomial coefficients
(
a
b

)
such that a and b are nonnegative integers

and a + b is an even integer less than 100. Find the remainder when N is divided by 144.
(Note:

(
a
b

)
= 0 if a < b, and

(
0
0

)
= 1.)

Answer: 3

Solution: Group the binomial coefficients by a + b. Then

N =
49∑

n=0

n∑
k=0

(
2n− k

k

)

The key step is to notice that the inner sum is the 2n-th Fibonacci number F2n, where F is
defined by F0 = F1 = 1 and Fi+1 = Fi + Fi−1 for all positive integers i. This can be proved
by induction.

Alternatively, consider partitioning a row of 2n squares into segments, each consisting of 1 or
2 squares. If there are k segments of 2 squares, then there are 2n − k total segments, and
therefore

(
2n−k

k

)
such partitions. As k varies through all possible values, the inner sum above

counts all such partitions. Therefore, the inner sum above is the number of partitions of a row
of 2n squares into segments of 1 or 2 squares.

But the number of partitions of a row of m squares into segments of 1 or 2 squares is Fm.
Clearly we can partition a row of 0 or 1 squares just 1 way, and the number of partitions of
a row of m squares is equal to the number of partitions ending in a 1-square segment, which
is the number of partitions of a row of m− 1 squares, plus the number of partitions ending in
a 2-square segment, which is the number of partitions of a row of m − 2 squares. Therefore
the numbers of partitions of rows of squares satisfies the Fibonacci recursion and has the same
initial values, so the number of partitions of a row of m squares into segments of 1 or 2 squares
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is Fm. Therefore the inner sum is F2n.

Then

N = F0 + F2 + · · ·+ F98

= F1 + (F2 + F4 + · · ·+ F98)
= F3 + (F4 + F6 + · · ·+ F98)
...
= F97 + (F98)
= F99

Now we want to evaluate F99 (mod 144). Note that F10 = 89 and F11 = 144. Therefore,
F11 ≡ 0 (mod 144), F12 ≡ 89 (mod 144), and F13 ≡ 89 (mod 144). Then F12 ≡ 89F0

(mod 144) and F13 ≡ 89F1 (mod 144). Therefore, we find inductively that Fi+12 ≡ 89Fi

(mod 144) for all nonnegative integers i.

Therefore, since 99 = 8 · 12 + 3, we have F99 ≡ 898F3 ≡ 3 · 898 (mod 144). By the Chinese
Remainder Theorem, it is sufficient to calculate F99 modulo 16 and 9. We have

F99 ≡ 3 · 98 ≡ 3 · 814 ≡ 3 (mod 16)
F99 ≡ 3 · (−1)8 ≡ 3 (mod 9)

Therefore, by the Chinese Remainder Theorem, F99 ≡ 3 (mod 144), so the answer is 3 .
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