PUMaC 2010

Algebra A

- 1. Find the sum of the coefficients of the polynomial $(63x 61)^4$.
- 2. Calculate $\sum_{n=1}^{\infty} \left(\lfloor \sqrt[n]{2010} \rfloor 1 \right)$ where $\lfloor x \rfloor$ is the largest integer less than or equal to x.
- 3. Let S be the sum of all real x such that $4^x = x^4$. Find the nearest integer to S.
- 4. Define $f(x) = x + \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \dots}}}}$. Find the smallest integer x such that $f(x) \ge 50\sqrt{x}$.
- 5. Let $f(x) = 3x^3 5x^2 + 2x 6$. If the roots of f are given by α , β , and γ , find

$$\left(\frac{1}{\alpha-2}\right)^2 + \left(\frac{1}{\beta-2}\right)^2 + \left(\frac{1}{\gamma-2}\right)^2.$$

- 6. Assume that f(a+b) = f(a) + f(b) + ab, and that f(75) f(51) = 1230. Find f(100).
- 7. The expression $\sin 2^{\circ} \sin 4^{\circ} \sin 6^{\circ} \cdots \sin 90^{\circ}$ is equal to $p\sqrt{5}/2^{50}$, where p is an integer. Find p.
- 8. Let p be a polynomial with integer coefficients such that p(15) = 6, p(22) = 1196, and p(35) = 26. Find an integer n such that p(n) = n + 82.