
Algebra B Solutions

1. If φ is the Golden Ratio, we know that 1
φ = φ − 1. I will define a new quantity, called φd,

where 1
φd

= φd − d (so φ = φ1). Given that φ2009 = a+
√
b

c , a, b, c positive integers, and the
greatest common divisor of a and c is 1, find a+ b+ c.

Solution. 4038096. Let x = φ2009. The equation 1
x = x−2009 is equivalent to 1 = x2−2009x

or also x2 − 2009x− 1 = 0. This is a quadratic equation with solutions x1,2 = 2009±
√

20092+4
2 .

From the statement of the problem it follows that we need to consider the solution with
the plus sign. Since GCD(2009, 2)=1, the fraction is written in the appropriate way, hence
a+ b+ c = 2009 + 20092 + 4 + 2 = 4038096.

2. Let p(x) be the polynomial with least degree, leading coefficent 1, rational coefficents, and

p(
√

3 +
√

3 +
√

3 + . . .) = 0. Find p(5).

Solution. 17. Let x =
√

3 +
√

3 +
√

3 + . . .. Using methods of calculus, one can show that x
is a well defined real number. Here, however we do not worry about such questions but rather
formally manipulate the expression with the square roots, trying to get some relation between
the powers of x. We have x2 = 3 +

√
3 +
√

3 + . . . = 3 + x hence x satisfies the equation
x2 − x − 3 = 0. From this it follows that x is not rational (since the roots of the quadratic
equation above aren’t), and so it does not satisfy any equation of the type x− n = 0, with n
rational. Hence p(x) is at least of degree 2, so p(x) = x2−x− 3. Then p(5) = 25− 5− 3 = 17.

3. Find the root that the following three polynomials have in common:

x3 + 41x2 − 49x− 2009

x3 + 5x2 − 49x− 245

x3 + 39x2 − 117x− 1435

(Hint: use all three polynomials.)

Solution. 7. Since the answer to each question on this test is integer-valued, we are looking
for integer solutions. It is known that an integer root of a monic polynomial having integer
coefficients must divide the constant coefficient. In our case the common root must divide
GCD(2009, 1435, 245). It is easy to factor 245 = 5 × 72 and check that 7 divides both 2009
and 1435, but 49 does not divide 435, and 5 does not divide 2009. Hence the GCD is 7, so
the common roots (if any) must be ±1 or ±7. One can check that only 7 is a common root.

4. Given that P (x) is the least degree polynomial with rational coefficients such that

P (
√

2 +
√

3) =
√

2,

find P (10).

Solution. 455. We compute the first few powers of x =
√

2 +
√

3 and try to find a relation
between them.

x0 = 1

1



x1 =
√

2 +
√

3

x2 = 5 + 2
√

6

x3 = 11
√

2 + 9
√

3

At this point, it seems possible that some expression ax3 + bx gives us
√

2. Indeed, requiring
the coefficients of both

√
2 and

√
3 to be 0 in the expression ax3 + bx−

√
2 = 0, where a, b are

rationals, we find 11a+ b−1 = 0 and 9a+ b = 0, with the unique solution (a, b) = (1/2,−9/2).
Hence P (x) = x3/2− 9x/2,and P (10) = 455. We can justify that P (x) needs to be of degree
at least 3: if it were of degree at most two, then we would have ax2 + bx + c −

√
2 = 0 for

some rational numbers a, b, c. We need the coefficients of
√

2,
√

3,
√

6 and 1 to be 0 (in more
advanced terms: these 4 numbers are linearly independent over Q), which imposes 4 equations
on our 3 coefficients, and will not have a solution.

5. Let x1, x2, ...x10 be non-negative real numbers such that x1
1 +x2

2 +...+x10
10 ≤ 9. Find the maxi-

mum possible value of x1
2

1 +x2
2

2 +...+x10
2

10 .

Solution. 810. If we denote xi/i by ai, we must maximize
∑
ia2
i subject to the condition∑

ai ≤ 9. Intuitively, the sum is large if the ai-s with large weights are themselves large. Indeed
the sum is largest when all weight is placed on a10:

∑
ia2
i ≤ 10

∑
a2
i ≤ 10(

∑
ai)2 ≤ 810. We

have equality if a10 = 9, and all other numbers are 0.

6. Find the smallest positive α (in degrees) for which all the numbers

cosα, cos 2α, . . . , cos 2nα, . . .

are negative.

Solution. 120. The answer can be guessed if one tries a few ’famous’ values (such as π/4, π/3
etc.). The proof requires a bit more work. The cosine function is periodic, hence we can restrict
our attention to the interval [0, 2π]. Also, cosα < 0, so we are in the interval (π/2, 3π/2). If
there is a good α in the interval (π, 3π/2), then α/2 is also good and smaller than α. Also,
α 6= π so we obtained that if there is a smallest α, it must satisfy π/2 < α < π.

Generally the condition cos 2nα < 0 means that there is an integer ln such that π/2 + 2lnπ <
2nα < 3π/2 + 2lnπ, or with the notation x = 2α/π:

4ln + 1 < 2nx < 4ln + 3

From the inequality on α we have [x] = 1 (where [.] denotes the floor function). We prove that
in base 4, x can be written as x = 1.11111 . . .. The inequality 4ln + 1 < 2nx < 4ln + 3 means
exactly that 2nx written in base 4 has the digit 1 or 2 on the unit position. Multiplying by
an appropriate power of 4, any digit in the expansion of x can be shifted to the unit position
- hence every digit of x is 1 or 2. This also holds for 2x: multiplying by an appropriate power
of 2, any digit in the expansion of 2x can be shifted to the position of the units, and so every
digit of 2x is 1 or 2. From this it follow that all digits of x are 1. Suppose the contrary, then
x = 1.1111 . . . 112 . . . (where there are m 1-s after the dot), and so 4m−1x = 11 . . . 11.2 . . ..
Multiplying this by 2, the digit that appears on the unit position is 3, since the fractional
part is greater than 1/2. Hence 22m−1x = 22 . . . 223.0 . . . or 22m−1x = 22 . . . 223.1 . . . and this
is a contradiction with the fact that the digit on the unit position of 2nx is 1 or 2. Hence
x = 1.11111 . . . = 4/3 and α = 2π/3.
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7. Find the maximal positive integer n, so that for any real number x we have sinn x+cosn x ≥ 1
n .

Solution. 8. For x = π we need (−1)n ≥ 1
n , hence n is even. Since sin2 x + cos2 x = 1, and

we need to find the minimum of sinn x + cosn x = sin2×n/2 x + cos2×n/2 x, one would expect
that the minimum occurs when sinx = cosx (in analogy with the AM-GM or the power mean
inequality). For x = π/4, we have sinx = cosx = 1/

√
2 so we need 2 × 1

2
n
2
≥ 1/n which

implies n ≤ 8. This can be proved from the binomial formula or using calculus. The last step
is to prove the inequality for n = 8. One way to do this is to use the power mean inequality:

(
sin8 x+ cos8 x

2
)

1
8 ≥ (

sin2 x+ cos2 x
2

)
1
2

hence sin8 x+cos8 x
2 ≥ 1

24 , which is the desired result. Using calculus, one can give a different
solution by finding the minimum of f(x)=sinn x+ cosn x.

8. Find the number of functions f : Z 7→ Z for which f(h+k)+f(hk) = f(h)f(k)+1, ∀ h, k ∈ Z.
Solution. 3. Putting (h, k) = (0, 0) we get (f(0) − 1)2 = 0 hence f(0) = 1. Then let
(h, k) = (1,−1) to find f(0) + f(−1) = f(1)f(−1) + 1 hence f(−1)(f(1)− 1) = 0. So there are
two cases: first, if f(1) = 1, then letting (h, k) = (1, k) yields f(1+k)+f(k) = f(1)f(k)+1, or
also f(k+1) = 1, that is f is constant, equal to 1. The second case is f(−1) = 0, and then we let
(h, k) = (−1,−1) to get f(−2) + f(1) = 1, and (h, k) = (1,−2) to get f(−2) = f(1)f(−2) + 1.
From the first equation we can express f(−2) = 1 − f(1) and substitute this into the second
one: 1−f(1) = f(1)(1−f(1))+1 or also (1− f(1))2 = 1. Hence there are two subcases: f(1) is
0 or 2. Recall that f(1+k)+f(k) = f(1)f(k)+1. If f(1) = 0, this becomes f(1+k) = 1−f(k)
and since f(0) = 1 the function takes the values 0 and 1 alternately: f(k) = 1+(−1)k

2 . On the
other hand, if f(1) = 2, then the equation becomes f(1 + k) = f(k) + 1, hence f(k) = k + 1
for all k. We obtained 3 solutions: f = 1, f(k) = 1+(−1)k

2 and f(k) = k + 1.
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