
PuMAC 2009-10 Power Test Solution

A Version

21 Problems; 86 Points

1 Notation

Throughout the solutions we will refer to {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)} as the
standard basis of Zn. The vector with the ith entry equal to one and the rest zero will be
denoted by ~ei.

2 Lattices (4 Problems; 15 Points)

Problem 2.1 (3pts). What are all the lattices in dimension one (That is, specify their
general form in the simplest possible terms).

Let L be a lattice of dimension 1. If L 6= {0}, L contains a smallest positive integer
d. We claim that L = dZ. Suppose a ∈ L. By the division algorithm, write a = qd + r,
0 ≤ r < d. Then r = a − qd ∈ L and hence r = 0 by the minimality of d. Thus d|a, which
shows L ⊂ dZ. The opposite containment is obvious. Including {0}, L = dZ for nonnegative
integers d.

Problem 2.2 (4pts). Prove that the lattice in dimension n generated by a set S is full if
and only if every vector in Zn is expressible as a rational linear combination of vectors in
S, i.e. if every ~a ∈ Zn is expressible in the form

∑
aixi, where xi ∈ S and ai ∈ Q.

Suppose lattice L generated by S is full. Then given ~a ∈ Zn, N~a ∈ L for some positive
integer N , so N~a can be written as an integral linear combination of vectors in S. Dividing
through by N gives ~a as a rational linear combination of vectors in S.

Conversely, given any ~a ∈ Zn, write it as a rational linear combination of vectors in S:
~a = p1

q1
~s1 + · · · + pk

qk
~sk. Multiplying through by N =

∏
qi gives N~a as an integral linear

combination of si, so N~a ∈ L.

Problem 2.3 (4pts). Is the lattice generated by {(2, 1, 6), (5, 6, 8), (1, 1, 2)} full?

Since (2, 1, 6) + (5, 6, 8) = 7(1, 1, 2), the lattice generated by {(2, 1, 6), (5, 6, 8)} is full if
and only if the lattice generated by {(2, 1, 6), (5, 6, 8), (1, 1, 2)} is full. Now the condition in
Problem 2.2 is that  2 5

1 6
6 8

( a1

a2

)
=

 x
y
z


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has rational solutions a1, a2 for any integer triple (x, y, z). Consider (x, y, z) = (0, 0, 1),
then 2a1 + 5a2 = 1a1 + 6a2 = 0. Solving for two unknowns with two equations yields
a1 = a2 = 0 as the only possible solution. We see that it is impossible to simultaneously also
have 6a1 + 8a2 = 1 so the lattice is not full.

Problem 2.4 (4pts). Is the lattice generated by {(2, 1, 6), (5, 6, 8), (1, 2, 2)} full?

We now wish to solve  2 5 1
1 6 2
6 8 2

 a1

a2

a3

 =

 x
y
z

 .

The matrix is invertible, having determinant 2(12 − 16) − 5(2 − 12) + 1(8 − 36) = 14 6= 0.
Multiplying both sides by the inverse on the left, which has rational entries, produces rational
ai for any triple (x, y, z), so this lattice is full. One can use other methods to solve this system
of equations as long as it is justified why the solution will be rational.

3 Determinant and Divisor (5 Problems; 17 Points)

Problem 3.1 (2pts). Show that ~a + L = ~b + L if and only if ~a−~b ∈ L.

If ~a + L = ~b + L, then in particular ~a + ~0 ∈ ~b + L, so ~a = ~b +~l for some ~l ∈ L and thus
~a−~b = ~l ∈ L. Conversely, suppose ~a−~b ∈ L. For any ~l ∈ L, we have ~a +~l = ~b + (~a−~b +~l)

with ~a −~b + ~l ∈ L, so ~a + ~l ∈ ~b + L. This shows ~a + L ⊂ ~b + L. Since −(~a −~b) = ~b − ~a,

exchanging the roles of ~a and ~b in the above argument shows the opposite containment.
Hence ~a + L = ~b + L.

Problem 3.2 (2pts). Show that if ~a−~b /∈ L, then (~a + L) ∩ (~b + L) = ∅.

We check the contrapositive: if (~a+L)∩ (~b+L) 6= ∅, then ~a+ ~l1 = ~b+ ~l2 for some ~li ∈ L,

so ~a−~b = ~l2 − ~l1 ∈ L.

Problem 3.3 (3pts). Let L be the lattice generated by {(1, 2), (2, 1)}. Draw the colattices
(0, 0)+L, (0, 1)+L, and (0, 2)+L. If you drew the diagram correctly, it should sort of jump
out that these are distinct colattices. If it doesn’t jump out, check your diagram! Now prove
that these colattices are in fact distinct without using the diagram. Also, prove that L has
no more colattices. Hence, conclude that det L = 3.

We show that (a, b) ∈ L iff 3|a + b. Any (a, b) ∈ L has the form n(1, 2) + m(2, 1) =
(n + 2m, 2n + m) for integers n and m, so a + b = 3(n + m). Conversely, if 3|a + b, then

(a, b) =

(
b− a + b

3

)
(1, 2) +

(
a− a + b

3

)
(2, 1) ∈ L.

By the above criteria, the difference of any two distinct vectors in {(0, i) : i = 0, 1, 2}
does not lie in L. Then by Problem 3.1, (0, i) + L, i = 0, 1, 2, are distinct. For an arbitrary
colattice (a, b)+L, 3|a+b−i for i = 0, 1, or 2. Then (a, b)−(0, i) ∈ L, so (a, b)+L = (0, i)+L
by Problem 3.1. Hence these are all the colattices, i.e. det L = 3.
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Problem 3.4 (5pts). , Prove that a lattice is full if and only if its determinant is finite.

Suppose L is full. Then for each k = 1, . . . , n, Ni~ei ∈ L for some positive integer Ni.
Given any ~a = (a1, . . . , an) ∈ L, write ai = qiNi + ri, 0 ≤ ri < Ni, by the division algorithm
on each coordinate. Then

~a− (r1, . . . , rn) = (q1N1, . . . , qnNn) = q1(N1 ~e1) + · · ·+ qn(Nn ~en) ∈ L.

By Problem 3.1, ~a+L = (r1, . . . , rn)+L. There are only finitely many colattices (r1, . . . , rn)+
L with 0 ≤ ri < Ni, so det L <∞.

Now suppose det L <∞. Then given ~a ∈ Zn, the colattices k~a + L, k ∈ Z, cannot all be
distinct, so k1~a+L = k2~a+L for some k1 > k2. By Problem 3.1, this implies (k1−k2)~a ∈ L.
Taking N = k1 − k2 shows that L is full.

Problem 3.5 (5pts). Prove that if L is a full lattice in dimension n, then its determinant
is divisible by (div L)n.

Let div L be denoted by d so that we have the series of inclusions L ⊂ dZn ⊂ Zn. There
are dn colattices of dZn in Zn explicitly given as A1 = {(a1, . . . , an) + dZn|0 ≤ ai ≤ d− 1}.
Consider the set of colattices of L which we will denote A2. A function f : A2 → A1 can be
defined by f(~a + L) = ~a + dZn. Note that it does not matter if we choose a different ~b to

represent the same collatice because then ~a−~b ∈ L ⊂ dZn so they define the same collatice
of dZn. Let f−1(~a + dZn) denote the subset of A2 which maps to ~a + dZn by f . This set
is non-empty and its size does not vary as we vary the collatice in A1. Indeed, let ci be
such that {ci + L|1 ≤ i ≤ k} = f−1(dZn). For any ~a + dZn ∈ A1 it is easy to check that
{~a + ci + L|1 ≤ i ≤ k} = f−1(~a + dZn). Now A1 has been partitioned by the f−1(~a + dZn)
into dn distinct sets each of size k. We conclude that kdn = det L and so (div L)n divides
the determinant of L.

4 Finite Generation (3 Problems; 13 Points)

Problem 4.1 (3pts). Prove that if L1 % L2, then det L1 < det L2 (or both are ∞).

Let A1 and A2 be the sets of colattices of L1 and L2 respectively so that the size of Ai

is det Li. If A2 is an infinite set, then we are already done. Let A2 be a finite set. We can
define a function f : A2 → A1 by sending a colattice ~a + L2 ∈ A2 to ~a + L1 ∈ A1. Note
that if ~a + L2 = ~b + L2 then ~a + L1 = ~b + L1 because of Problem 3.1 and ~a−~b ∈ L2 ⊂ L1.
Furthermore, every collatice in A1 is mapped to by some collatice in A2 simply by considering
f(~a + L2) = ~a + L1 for any ~a ∈ Zn. Therefore, the number of elements of A1 is less than
or equal to the number of elements of A2. To prove the strict inequality, we need to exhibit
two colattices in A2 mapping to the same colattice in A1. Take ~l ∈ L1 with ~l /∈ L2, then
f(~l + L2) = f(~0 + L2) = L1 but ~l + L2 6= L2.

Problem 4.2 (5pts). Prove that every full lattice has a full sublattice that is finitely gener-
ated.

3



Let L denote our full lattice in Zn and let ~ei for 1 ≤ i ≤ n be the standard basis. By the
definition of fullness, there exist positive integers Ni for 1 ≤ i ≤ n such that Ni~ei ∈ L. The
lattice K generated by {Ni~ei} is a sublattice of L because any integer linear combination
of vectors in a lattice is still a vector in the lattice. To see that K is full, take any ~a ∈ Z
written as ~a =

∑
ki~ei, then

∏
Ni~a is in K.

Problem 4.3 (5pts). Prove that every full lattice if finitely generated.

We combine the last two problems to solve this problem. Consider the set of finitely
generated full sublattices of L. These lattices have finite determinant by Problem 3.4 and
so by the well ordering principle, there must be a finitely generated full sublattice M with
minimal determinant. Assume M does not equal to L so that we can take ~l ∈ L with ~l /∈M .
The generators of M together with ~l generate a finitely generated full sublattice of L which
we will call M ′. Clearly M ′ % M so by Problem 4.1 det M ′ < det M . Therefore M ′ violates
the minimality of M so it must have been that M = L and L is finitely generated.

5 Isomorphism Types of Lattices (7 Problems; 28 Points)

Definition 5.1. Two lattices L1 and L2 in Zn are said to be isomorphic iff there exists a
linear bijection f : Zn → Zn which is also a bijection from L1 to L2. [A map f : Zn → Zm

is said to be linear iff f(~0) = ~0, and f(~a +~b) = f(~a) + f(~b)].

For example, the linear bijection f : Z2 → Z2 defined by f(x, y) = (5x + 2y, 2x + y) is
also a bijection from the lattice L1 generated by {(2, 1), (1, 2)} to the lattice L2 generated
by {f(2, 1), f(1, 2)} = {(12, 5), (9, 4)}; hence L1 and L2 are isomorphic. Note that L2 is also
the lattice generated by {(3, 0), (0, 1)}.

Problem 5.1 (2pts). Prove that div is an isomorphism invariant.

Let the two lattices L1 and L2 be isomorphic by the bijective linear map f : Zn → Zn.
First we show that for any ~a ∈ Zn and any d a positive integer, f(d~a) = df(~a). This is true
for d = 1. If it is true for d then it is true for d + 1 by

f((1 + d)~a) = f(~a + d~a) = f(~a) + f(d~a) = f(~a) + df(~a) = (1 + d)f(~a).

If the divisors of L1 and L2 are denoted d1 and d2 respectively then this shows that because
every member of L1 is of the form d1~a then so is every member of L1. Now d2 ≥ d1 by
definition. Taking f−1 reverses the roles to obtain d1 ≥ d2 and therefore d1 = d2.

Problem 5.2 (2pts). Prove that det is an isomorphism invariant.

Let two lattices L1 and L2 be isomorphic by the bijective linear map f : Zn → Zn.
Consider a collatice ~a + L1 which maps by f to f(~a) + f(L1) = f(~a) + L2. Therefore f maps
collatices to collatices. The inverse map f−1 is an inverse to that map on collatices, so the
number of collatices of L1 is equal to the number of collatices of L2.

Problem 5.3 (3pts). Are the lattices generated by {(3, 0), (0, 5)} and {(1, 0), (0, 15)} iso-
morphic?
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Yes, the lattices are isomorphic. This follows from Problem 5.6 below, since both lattices
have divisor 1 and determinant 15.

Problem 5.4 (3pts). Are the lattices generated by {(2, 0), (0, 4)} and {(1, 0), (0, 8)} isomor-
phic?

No, the lattices are not isomorphic. This follows from Problem 5.1 above since the divisors
are 2 and 1 respectively.

Problem 5.5 (4pts). For any two integers d ≥ 1 and ∆ ≥ 1 with ∆ divisible by d2, give an
example of a lattice in Z2 with divisor d and determinant ∆.

Consider the lattice L generated by {(d, 0), (0, ∆/d)}. Since d2 divides ∆, we know
that d divides ∆/d. Thus the divisor of L is at least d. By looking at the first generator,
we conclude that the divisor of L is at most d. Thus div L = d. Also we certainly have
det L = d · (∆/d) = ∆.

Problem 5.6 (7pts). Prove that if two full lattices in Z2 have the same determinant and
same divisor then they are isomorphic. Conclude that all full lattices in Z2 are isomorphic
to one of the lattices from problem 5.5 (don’t forget the result of problem 3.5).

By rescaling, it suffices to treat the case that d = 1. Suppose we are given a full lattice L
in dimension two with div L = 1 and det L = ∆. We would like to show that L is isomorphic
to the lattice generated by {(1, 0), (0, ∆)}.

Since L is full, we know that (E, 0) ∈ L for some large E. Pick the smallest such E,
and let ~a = (0, E) ∈ L. Now again since L is full, the set of y-coordinates of vectors in L

contains some elements other than zero. Thus we can find a vector ~b = (C, D) ∈ L where

C > 0 is as small as possible. From our choice of vectors, it is clear that ~a and ~b generate
L. Thus since div L = 1, we know that gcd(C, D, E) = 1. Thus there exists an integer k
such that gcd(C, D + kE) = 1. WLOG, we may assume that k = 0. Thus gcd(C, D) = 1,
so there exist integers x, y with Cx + Dy = 1. Now consider the matrix M = ( C D

−y x ). Since
det M = Cx + Dy = 1, M is invertible and M−1 has integer entries. Thus we may apply
the matrix M−1 to the generators of L and get generators of an isomorphic lattice L′. Since
M(1, 0) = ~b, we conclude that (1, 0) ∈ L′. Now we are done, since every lattice containing
(1, 0) is equal to the lattice generated by {(1, 0), (0, P )} for some integer P . Comparing
determinants, we conclude that P = ∆, so the desired isomorphism is demonstrated.

Problem 5.7 (7pts). Prove that divisor and determinant do not characterize lattices in
dimension three. That is, construct two lattices L1 and L2 in Z3 which have the same
determinant and the same divisor but which are not isomorphic.

Let L1 be the lattice generated by {(1, 0, 0), (0, 2, 0), (0, 0, 2)} and let L2 be the lattice
generated by {(1, 0, 0), (0, 1, 0), (0, 0, 4)}. Both L1 and L2 have divisor 1 and determinant 4.
By inspection, we see that for any vector ~a ∈ Z3, it is true that 2~a ∈ L1. This property
is clearly preserved under isomorphism. However, the vector ~a = (0, 0, 1) satisfies 2~a /∈ L2.
Thus L1 and L2 are not isomorphic.
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6 Canonical Form (2 Problems; 13 Points)

The following theorem is true (proving it is not part of this test).

Theorem 6.1. Every lattice in dimension n is isomorphic to the lattice generated by

{d1~e1, . . . , dn~en} (6.1)

for some di ∈ N ∪ {0} where di|di+1. Furthermore, the sequence of integers (d1; . . . ; dn) is
isomorphism invariant; it is called the signature of the lattice.

You may assume it is true for any of your work on problems appearing after this point
in the test.

Problem 6.1 (5pts). Calculate the signature of the lattice generated by:

{(2, 2, 0), (0, 3, 3)} (6.2)

Since the signature is isomorphism-invariant, we will change the base space slightly, and
take the given lattice (call it L) to be the lattice generated by {(2, 2, 0), (3, 0, 3)}. We can do
that by the isomorphism that switches the first two coordinates of an element [so (2, 2, 0) goes
to itself, and (0, 3, 3) goes to (3, 0, 3)]. So it is enough to find the signature of this lattice. But
we immediately have (3, 0, 3)− (2, 2, 0) = (1,−2, 3) and (2, 2, 0)− 2(1,−2, 3) = (0, 6,−6), so
that our lattice L is in fact generated by (1,−2, 3) and (0, 6,−6). So now, call (1,−2, 3) = e1

and (0, 1,−1) = e2. It is easy to show that in Zn, these basis vectors are exactly equivalent
to the usual definitions of e1 = (1, 0, 0) and e2 = (0, 1, 0). In particular, the lattice L is
generated by 1e1 and 6e2 and 0e3. So, since we have isomorphism invariance, the lattice
must also be generated by {1(1, 0, 0), 6(0, 1, 0), 0(0, 0, 1)}. Hence, the signature of the lattice
is (1; 6; 0).

Problem 6.2 (8pts). Calculate the signature of the lattice generated by:

{(0, 2, 5, 3), (5, 4, 5, 7), (5, 9, 7, 1), (5, 7, 5, 7)} (6.3)

The signature is (1; 1; 3; 180).
In general, a lattice can be represented by a matrix M with columns generating the lattice.

The same lattice is generated if one replaces the columns by invertible linear combinations.
One can also obtain an isomorphic lattice by taking bijective linear transformations of the
underlying Zn which amounts to replacing the rows by invertible linear combinations. The
goal is to compute the signature of the lattice by transforming the matrix M into a diagonal
matrix. In this case M is the 4 by 4 matrix

0 5 5 5
2 4 9 7
5 5 7 5
3 7 1 7

 .
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By using the third column to eliminate the bottom row and one obtains
−15 −30 5 −30
−25 −59 9 −56
−16 −44 7 −44

0 0 1 0

 .

Using the fourth row, one can now elminate the entries in the third column and we are now
left with the remaining three by three matrix 15 30 30

25 59 56
16 44 44

 .

Subtracting the first row from the second and third, then clearing out the first column with
the last row yields  0 −180 −180

0 −111 −114
1 14 14

 .

Clearing out the bottom row now leaves us with a two by two matrix which we easily reduce
in a few steps: (

180 180
111 114

)
→
(

180 0
111 3

)
→
(

3 0
0 180

)
This solution is very close to a proof of Theorem 6.1. See if you can figure it out.
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