

PUMaC 2008-9

Number Theory A

- 1. (2 points) How many zeros are there at the end of 792! when written in base 10?
- 2. (3 points) Find all integral solutions to $x^y y^x = 1$.
- 3. (3 points) Find the largest integer n, where 2009^n divides $2008^{2009^{2010}} + 2010^{2009^{2008}}$
- 4. (3 points)f(n) is the sum of all integers less than n and relatively prime to n. Find all integers n such that there exist integers k and l such that $f(n^k) = n^l$.
- 5. (4 points) If $f(x) = x^{x^x}$, find the last two digits of f(17) + f(18) + f(19) + f(20).
- 6. (4 points) What is the largest integer which cannot be expressed as 2008x + 2009y + 2010z for some positive integers x, y, and z?
- 7. (5 points) Find the smallest positive integer n such that $32^n = 167x + 2$ for some integer x.
- 8. (5 points) Find all sets of three primes p, q, and r such that p + q = r and (r p)(q p) 27p is a perfect square.
- 9. (7 points) Find the number of positive integer solutions of $(x^2 + 2)(y^2 + 3)(z^2 + 4) = 60xyz$.
- 10. (7 points) What is the smallest number n such that you can choose n distinct odd integers $a_1, a_2, \ldots a_n$, none of them 1, with $\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n} = 1$?