

Number Theory A

1. Find the last three digits of

- 2. Find the largest integer n which equals the product of its leading digit and the sum of its digits.
- 3. In how many ways can $1+2+\cdots+2007$ be expressed as a sum of consecutive positive integers?
- 4. A positive integer is called *squarefree* if its only perfect square factor is 1. Call a set of positive integers *squarefreeful* if each product of two of its elements is squarefree, and *squarefreefullest* if no positive integer less than the maximum element of the set can be added while preserving the set's squarefreefulness. What is the minimum number of elements in a squarefreefullest set containing 31?
- 5. Let F_n be the Fibonacci numbers, defined by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$. For each i, $1 \le i \le 200$, we calculate the greatest common divisor g_i of f_i and f_{2007} . What is the sum of the distinct values of g_i ?
- 6. Find the number of ordered triplets of nonnegative integers (m, n, p) such that $m + 3n + 5p \le 600$.
- 7. How many ordered pairs of integers (x, y) satisfy

$$8(x^3 + x^2y + xy^2 + y^3) = 15(x^2 + y^2 + xy + 1)?$$

- 8. For how many ordered pairs of positive integers (x,y) is $\frac{x^2+y^2}{x-y}$ an integer factor of 2310?
- 9. How many pairs of integers a and b are there such that a and b are between 1 and 42 and $a^9 = b^7 \mod 43$?
- 10. Find all primes p such that there exists positive integers q and r such that $p \not| q$, $3 \not| q$, $p^3 = r^3 q^2$