
AwesomeMath Sample Admission Test Solutions 

Each entry of a 4 × 4 square table of numbers is either 1 or 2. Suppose that the 

sum of 9 entries in each of the four 3 × 3 sub-square tables is divisible by 4, 

while the sum of all the 16 entries in the table is not divisible by 4. Determine 

the least and greatest possible values of the sum of all the entries. 

Solution: The answers are 19 and 30 , respectively. 

Since the sum of the entries in the top left 3 × 3 table is divisible by 4, the 

minimum of this sum is 12; that is, there are at least three 2’s as the entries in 

the table. Hence the minimum of the sum of the entries in the whole table is at 

least 13×1+3×1 = 19. This minimum can be easily achieved by making any of 

three entries of the middle 2 × 2 table as 2’s and rest of the entries as 1’s. 

In exactly the same way, we can show that the greatest sum is 30. We leave 

the details to the reader. 

2. Determine the least positive integer n for which the following result holds: No 

matter how the elements of the set {1,2,...,n} are colored in red or blue, there 

are integers x,y,z, and w in the set (not necessarily distinct) of the same color 

such that x + y + z = w. 

Solution: The answer is 11 . 

First, we note that n ≥ 10 because we can color 1 and 2 red, 3, 4, 5, 6, 7, and 8 

blue, and 9 and 10 red. It is not difficult to check that this coloring does not 

meet the conditions of the problem. 

Next we show that n = 11 suffices. We approach this indirectly by assuming 

that there is a coloring of the numbers in set {1,2,...,11} such that there is no 

quadruple (x,y,z,w) of numbers of the same color such that x + y + z = w. 

Without loss of generality, we assume that 1 is colored red. Then 3 must be 

blue and 9 must be red. This implies that 4 must be blue (otherwise 9 = 4 + 4 + 

1 violates our assumption). Then 11 cannot be colored because 11 = 1 + 1 + 9 

= 3 + 4 + 4, a contradiction! Hence our assumption was wrong and n = 11 

suffices. 

3. Let ABCD be a trapezoid with AB k CD, AB = 7, and CD = 17.（a ）The 

diagonals of the trapezoid cut the trapezoid into four triangular regions. If all 



theareas of the triangular regions are integers, what is minimum value of the 

area of the trapezoid?(b) Points F and E lie on sides AD and BC, respectively 

such that EF k AB. If the trapezoids ABEF and CDFE have the same area, 

compute EF. 

Solution: The answer are 576 and 13 , respectively. 

Assume that diagonals AC and BD meet at P, and lines AD and BC meet Q. 

Let [R] denote the area of region R. In general, we assume that AB = a and CD 

= b. 

(a) Triangles ABP and CDP are similar with side ratio a : b. Hence we assume 

[ABP] = a2x and [CDP] = b2x. By similarity, we know that 

 

. Triangles ABP and ADP share the same altitude (from A to line BC). Hence 

 

, and so [ADP] = abx. Likewise, [BPC] = abx. It follows that [ABCD] = (a + b)2x. 

In this problem, a = 7 and b = 17, and a2x,b2x, and abx are all integers. Thus x 

must be an integer, and the minimum value of [ABCD] is 576. 

(b)We set EF = c. Note that triangles QAB, QFE, and QDC are similar. We 

may assume that [QAB] = a2y, [QFE] = c2y, and [QDC] = b2y. Since [ABEF] = 

[CDFE], [QAB],[QFE], and [QDC] form an arithmetic progression; that is, 

c2y−a2y = b2y−c2y, or 2c2 = a2 + b2. 

In this problem, we have 2c2 = 72 + 172, implying that c = 13. 

4. Each of the numbers 1,2,...,8 is written at a distinct corner of a cube. 

Assume that the sum of any three numbers written on a face of the cube is no 



less than 10. Determine minimum value the sum of numbers written on a face 

of the cube? 

Solution: The answer is 16 . 

Let m denote the minimum, and let a,b,c,d be the numbers written on a faces 

with a + b + c + d = m. Without loss of generality, we may assume that a < b < 

c < d. Then a + b + c ≥ 10. Because 2 + 3 + 4 = 9, it follows that c ≥ 5, and so d 

≥ 6. Hence m = (a + b + c) + d ≥ 10 + 6 = 16. The following example shows that 

16 is also obtainable. 

 

Note: This was problem 1 in the 2003 Chinese Western Mathematics 

Olympiad. 

5. How many ways can 8 mutually non-attacking rooks be placed on the 9×9 

chessboard so that all 8 rooks are on squares of the same color. (Two rooks 

are said to be attacking each other if they are placed in the same row or 

column of the board. Two placements are considered different if one can be 

obtained from the other by via reflections or rotations.) 

 

Solution: The answer is 40320 . 



We first assume that all the rooks are placed in the black fields. Note that a 

rook placed on a black square in an odd numbered row cannot attack a rook 

on a black square in an even row. This effectively partition the black squares 

into a 5 × 5 and a 4 × 4 sub-board. Exactly one of the rows must be empty, and 

each other row contains exactly one rook. If the empty row consists of 4 black 

squares. There are 4 ways to choose such a row. Then 5 rooks must be placed 

in each of the rows with 5 black squares. There are 5! ways to do so. We then 

have to place 3 rooks on a 3 · 4 black sub-board. There are 4! ways to do so 

(by considering the choices for columns). Thus there are 4 · 5! · 4! possible 

arrangements under our assumptions. In exactly the same way, we can show 

that there are 5 · 5! · 4! ways to arrange the rooks by assuming that they are 

placed in the black fields and the row without a rook contains 5 black squares. 

It follows that there are 4·5!·4!+5·5!·4! = 9·5!·4! ways to place the rooks in the 

black fields. 

Likewise, we can show that there are 5 · 5! · 4! ways to place the rooks in the 

black fields. (There is only one case here, since we can not have a row with 5 

white square empty.) Hence the answer is 9 · 5! · 4! + 5 · 5! · 4! = 14 · 5! · 4! = 

40320. 

Note: This was problem 2 in the 2004 Canadian Mathematics Olympiad. 

We can also count the number ways of placing 8 mutually non-attacking rooks 

on black squares as following: Thinking about placing 9 mutually non-attacking 

rooks in stead. Then the answer would be 5!·4!. Then there are 9 ways to 

remove one of the rook. Hence the answer is 9 · 5!4!. (It is important that there 

is no repetition by removing 1 rook from two distinct arrangements of 9 rooks, 

because two distinct 9-rook arrangements have to be different in at least two 

places.) 

6. Let x,y, and z be complex numbers such that x + y + z = 2, x2 + y2 + z2 = 3, 

and xyz = 4. 

Evaluate 

 

. 



Solution: The answer is -2/9 . 

Let S be the desired value. Note that 

xy + z − 1 = xy + 1 − x − y = (x − 1)(y − 1). 

Likewise, yz + x − 1 = (y − 1)(x − 1) and zx + y − 1 = (z − 1)(x − 1). Hence 

 

But 

2(xy + yz + zx) = (x + y + z)2 − (x2 + y2 + z2) = 1. 

Therefore 

 

7. For any positive integer n, let f(n) denote the index of highest power of 2 

which divides n!. (For example, since 10! = 28 · 34 · 52 · 7, f(10) = 8.) Compute 

f(1) + f(2) + ··· + f(1023). 

Solution: The answer is 518656 . 

Let p be a prime. For any positive integer n, let ep(n) be the exponent of p in 

the prime factorization of n!. We have 



 

. 

In this problem, f(n) = e2(n), and we compute 

 

8. Telephone numbers in a certain country have 6 digits. How many 

telephones can be installedsuch that any two numbers differ in at least two 

places? 

Solution: The answer is 10^5 ; that is 10^5 phone numbers can be assigned. 

One method for doing so is to use a check digit, as follows. For each of the 105 

5-digit strings x1x2x3x4x5, define digit x6 so that 

x6 ≡ x1 + x2 + x3 + x4 + x5 (mod 10) 

and produce 6-digit phone number x1x2x3x4x5x6. For any pair of distinct 

6-digit strings x1x2x3x4x5x6 and y1y2y3y4y5y6 constructed in this way, there 

must be at least one position j with 1 ≤ j ≤ 5 such that aj 6= bj. If there are two 

such j’s, these two strings differ at those two places. If there is only one such j, 

then 

y6 − x6 ≡ (y1 + y2 + y3 + y4 + y5) − (x1 + x2 + x3 + x4 + x5) ≡ yj − xj 6≡ 0 (mod 

10), 

implying that y6 =6 x6. Hence x1x2x3x4x5x6 and y1y2y3y4y5y6 are differ at 

the jth and the 6th places. In any case, x1x2x3x4x5x6 and y1y2y3y4y5y6 must 

differ in at least two places. 



To show that no method can produce a greater number of acceptable phone 

numbers, observe that among 105 + 1 distinct phone numbers, two would 

have agree in their first five places, where only 105 distinct 5-digit 

combinations are possible. These two phone numbers would differ in only in 

the 6th place. 

Note: The following problem was problem 1 in 1990 USAMO: 

A certain state issue license plates consisting of six digits (from 0 through 9) 

The state requires that any two plates differ in at least two please. (Thus the 

plates 027592 and 020592 cannot both be used.) Determine, with proof, the 

maximum number of distinct license plates that the state can issue. 

9. In triangle ABC, AB = AC and D is the midpoint of side BC. Point E lies on 

side AB with DE ⊥ AB, and F is the midpoint of segment DE. Prove that AF 

⊥ EC. 

 

Proof: It is clear that ∠ADB = 90◦. It is then not difficult to see that triangles 

AED and DEB are similar by AAA. It follows that EDAD = BDBE, implying that 

 

. 



Combining the above relation with ∠EBC = ∠ABC = ∠ADE = ∠ADF, we 

conclude that triangle AFD is similar to triangle CEB (by SAS). It follows that 

the angles formed by the corresponding sides of the two triangles are equal to 

each other. (One can obtain one triangle by rotating and dilating the other.) 

Since AD ⊥ CB, we obtain AF ⊥ CE, as desired. 

10. For positive integer k, let p(k) denote the greatest odd divisor of k. Prove 

that for every positive integer n, 

 

. 

Proof: Let 

 

. 

We need to show that 

 

. (∗) 

We apply strong induction on n. The statement (∗) is true for n = 1 and n = 2 

since 



 

and 

 

. 

Assume that the statement (∗) is true for all integers n less than k, where k is 

some positive integer. We will show that the statement (∗) is true for integers n 

= k + 1. The key fact is that p(2k) = p(k). We consider two cases. 

In the first case, we assume that k is even. We write k = 2m, where m is a 

positive integer less than k. For n = k + 1 = 2m + 1, we note that 

 

By the induction hypothesis, we have 

 

. 

Since 



 

and ( 

 

, it follows that 

 

, 

which is (∗) for n = 2m + 1. 

In the second case, we assume that k is odd. We write k = 2m + 1 and n = k + 

1 = 2m + 2. Similar to the first case, we can show that 

By induction hypothesis, it is not difficult to show that the statement (∗) is also 

true for n = 2m + 2, which completes our induction 

 


