
2008
Canadian
Computing
Competition:
Senior
Division

Sponsor:

1

Canadian Computing Competition
StudentInstructions for the Senior Problems

1. You may only compete in one competition. If you wish to write the Junior paper, see the
other problem set.

2. Be sure to indicate on yourStudent Information Form that you are competing in theSenior
competition.

3. You have three (3) hours to complete this competition.

4. You should assume that

• all input is from a file namedsX.in, where X is the problem number (1≤ X≤ 5).

• all output is to the screen

For some problems, you may be asked for prompting: please provide this for the user. If
no prompting is required, you do not need to provide any. Be sure your output matches the
output in terms of order, spacing, etc. IT MUST MATCH EXACTLY!

5. Do your own work. Cheating will be dealt with harshly.

6. Do not use any features that the judge (your teacher) will not be able to use while evaluating
your programs.

7. Books and written materials are allowed. Any machine-readable materials (like other pro-
grams which you have written) arenot allowed. However, you are allowed to use “stan-
dard” libraries for your programming languages; for example, the STL for C++, java.util.*,
java.io.*, etc. for Java, and so on.

8. Applications other than editors, compilers, debuggers or other standard programming tools
arenot allowed. Any use of other applications will lead to disqualification.

9. Please use file names that are unique to each problem: for example, please uses1.pas or
s1.c or s1.java (or some other appropriate extension) for Problem S1. This will make
the evaluator’s task a little easier.

10. Your program will be run against test cases other than the sample ones. Be sure you test
your program on other test cases. Inefficient solutions may lose marks for some problems,
especially Problems 4 and 5. Be sure your code is as efficient (in terms of time) as possible.

11. Note that the top 2 Senior competitors in each region of the country will get a plaque and
$100, and the schools of these competitors will also get a plaque. The regions are:

• West (BC to Manitoba)

• Ontario North and East

2

• MetroToronto area

• Ontario Central and West

• Quebec and Atlantic

12. If you finish in the top 20 competitors on this competition, you will be invited to participate
in CCC Stage 2, held at the University of Waterloo in May 2008. Should you finish in the
top 4 at Stage 2, you will be a member of the Canadian IOI team at IOI 2008, held in Egypt.
Note that you will need to know C, C++ or Pascal if you are invited to Stage 2. But, first, do
well on this contest!

13. Check the CCC website at the end of March to see how you did on this contest, how the
problems were meant to be solved, and to see who the prize winners are. The CCC website
is:

www.cemc.uwaterloo.ca/ccc

3

Problem S1: It’s Cold Here!

Problem Description
Canada is cold in winter, but some parts are colder than others. Your task is very simple, you need
to find the coldest city in Canada. So, when given a list of cities and their temperatures, you are to
determine which city in the list has the lowest temperature and is thus the coldest.

Input
The input is a sequence of city names and temperature values. Temperatures are integer, possibly
preceded with a “minus” sign. There is a single space between the city name and the temperature.
No city name contains any whitespace and is always less than 256 characters in length. There is at
least one city in the list, no more than 10000 cities, and the last city is always Waterloo. You may
assume that the temperature is not less than−273 and not more than200.

Output
You are to output the name of the coldest city on a single line with no whitespace before or after
the name. You may assume that there will not be more than one city which is the coldest.

Sample Input
Saskatoon -20
Toronto -2
Winnipeg -40
Vancouver 8
Halifax 0
Montreal -4
Waterloo -3

Output for Sample Input
Winnipeg

4

Problem S2: Pennies in the Ring

Problem Description
The game “Pennies in the Ring” is often played by bored computer programmers who have gotten
tired of playing solitare. The objective is to see how many pennies can be put into a circle. The
circle is drawn on a grid, with its center at the coordinate(0, 0). A single penny is placed on every
integer grid coordinate (e.g.,(1, 1), (1, 2), etc.) that lies within or on the circle. It’s not a very
exciting game, but it’s very good for wasting time. Your goal is to calculate how many pennies are
needed for a circle with a given radius.

Input
The input is a sequence of positive integer values, one per line, where each integer is the radius of
a circle. You can assume the radius will be less than or equal to25000. The last integer will be
indicated by0. You may assume that the grid is large enough for two pennies to be on adjacent
integer coordinates and not touch.

Output
You are to output, each on its own line, the number of pennies needed for each circle. You do not
need to output0 for the last0. You may assume that the number of possible pennies is less than 2
billion (which is only $20 million dollars: computer scientists have lots of money).

Sample Input
2
3
4
0

Output for Sample Input
13
29
49

5

Problem S3: Maze

Problem Description
In order to make a few dollars, you have decided to become part of a scientific experiment. You
are fed lots of pizza, then more pizza and then you are asked to find your way across the city on a
scooter powered only by pizza. Of course, the city has lots of intersections, and these intersections
are very controlled. Some intersections are forbidden for you to enter; some only let you move
north/south as you leave the intersection; others let you move only east/west as you leave the
intersection; and the rest let you go in any compass direction (north, south, east or west).

Thankfully your scientific friends have given you a map of the city (on the back of a pizza box),
with an arrangement of symbols indicating how you can move around the city. Specifically, there
are 4 different symbols on the box:

• The symbol+ indicates we can move in any direction (north/south/east/west) from this lo-
cation.

• The symbol- indicates we can move only east or west from this location.

• The symbol| indicates we can move only north or south from this location.

• The symbol* indicates we cannot occupy this location.

Your task is to determine how many intersections you must pass through to move from the north-
west corner of the city to the south-east corner of the city.

Input Specification
The input begins with a numbert (1 ≤ t ≤ 10) on its own line, which indicates how many different
cases are contained in this file. Each case begins with a numberr on one line, followed by a number
c on the next line (1≤ r, c ≤ 20). The nextr lines containc characters, where each character is
one of{+, *, -, |}. You may assume the north-west corner of the city can be occupied (i.e.,
it will not be marked with*).

Output Specification
The output will bet lines long, with one integer per line. The integer on linei (1 ≤ i ≤ t) indicates
the minimum number of intersections required to pass through as you move from the north-west
corner of the city to the south-east corner of the city. If there is no way to get from the north-west
corner to the south-east corner, output−1 for that test case.

6

Sample Input
3
2
2
-|
*+
3
5
+||*+
+++|+
**--+
2
3
+*+
+*+

Output for Sample Input
3
7
-1

7

Problem S4: Twenty-four

Problem Statement

Twenty-four is a popular card game designed to be played by four players. Each
playeris dealt a deck of cards, which are kept face down. On every turn, each
of the four players turns over the top card of his or her deck, so that it is visible
to all. The goal is to find an arithmetic expression using the values of the cards
(with A meaning 1, J meaning 11, Q meaning 12, and K meaning 13) that
evaluates to the number 24. For example, for the example in the illustration,
one possible expression would be:

((A * K)- J) * Q
((1*13)-11) * 12

The first player to find such an expression wins the turn, and adds all four cards to the bottom of
his or her deck.

Each valid arithmetic expression must use all four cards, and must combine their values using
addition, subtraction, multiplication, or division. Parentheses are allowed to specify precedence
of operations. Juxtaposing cards to make multiple-digit decimal numbers is not allowed (e.g. you
cannot place the cards 2 and 4 beside each other to make 24). Non-integer quotients of division
are also not allowed, even as a partial result (of a subexpression of the overall expression).

In some cases, the players may take a very long time to find an expression evaluating to 24. In fact,
in some cases, no such expression exists. Your task is to determine, given four cards, an expression
that evaluates to the largest number less than or equal to 24.

Input Specification
The first line contains an integer1 ≤ N ≤ 5 indicating the number of card hands that follow. Each
hand consists of four lines. Each of these lines is an integer1 ≤ C ≤ 13 indicating the value of a
card.

Output Specification
For each hand, output a line containing an integern if the cards can be combined using arithmetic
operators to evaluate ton. The valuen should be the largest possible value amongst all possible
arithmetic expressions using these 4 cards, so long asn ≤ 24.

8

Sample Input
3
3
3
3
3
1
1
1
1
12
5
13
1

Output for Sample Input
24
4
21

9

Problem S5: Nukit

Problem Description
Canada’s top two nuclear scientists, Patrick and Roland, have just completed the construction of
the world’s first nuclear fission reactor. Now it is their job to sit and operate the reactor all day,
every day. Naturally they got a little bored after doing this for a while and as a result, two things
have happened. First, they can now control the individual reactions that happen inside the reactor.
Second, to pass the time, they have invented a new game called Nukit.

At the beginning of Nukit, a number of particles are put in the reactor. The players take alternating
turns, with Patrick always going first. When it is a player’s turn to move, they must select some of
the remaining particles to form one of the possible reactions. Then those particles are destroyed.
Eventually there will be so few particles that none of the reactions can be formed; at this point, the
first person who is unable to form a reaction on their turn loses.

In our universe you can assume that there are only 4 types of particles: A, B, C, D. Each reaction
is a list of particles that can be destroyed on a single turn. The five reactions are:

1. AABDD

2. ABCD

3. CCD

4. BBB

5. AD

For example, the first reaction “AABDD” says that it is allowable to destroy two A, one B, and two
D particles all at the same time on a turn.

It turns out that, no matter how many particles start off in the reactor, exactly one of Patrick or
Roland has aperfect winning strategy. Byplayer X has a perfect winning strategy, we mean that
no matter what the other player does, player X can always win by carefully choosing reactions.
For example, if the reactor starts off with one A, five B, and three D particles then Roland has the
following perfect winning strategy: “if Patrick forms reaction BBB initially, then form reaction
AD afterward; if Patrick forms reaction AD initially, then form reaction BBB afterward.” (The
strategy works because either way, on Patrick’s second turn, there are not enough particles left to
form any reactions.)

Given the number of each type of particle initially in the reactor, can you figure out who has a
perfect winning strategy?

Input Specification
The first line of input containsn, the number of test cases (1≤ n < 100). Each test case consists

10

of 4 integers separated by spaces on a single line; they represent the initial number of A, B, C and
D particles. You can assume that there are initially between 0 and 30 (inclusive) of each type of
particle.

Output Specification
For each test case, output the player who has a perfect winning strategy, either “Roland” or
“Patrick”.

Sample Input
6
0 2 0 2
1 3 1 3
1 5 0 3
3 3 3 3
8 8 6 7
8 8 8 8

Output for Sample Input
Roland
Patrick
Roland
Roland
Roland
Patrick

Partial Explanation for Sample Output
The first output occurs since Patrick loses immediately, since he cannot formanyreaction. (Roland’s
perfect winning strategy is “do nothing.”)

The second output occurs since Patrick has the perfect winning strategy “form reaction ABCD,”
which makes Roland lose on his first turn.

The third output is explained in the problem statement.

11

