
Problem S1: Snow Calls

You've been snowed in at your summer residence. And without the Internet! Unfortunately, this
means you're going to have rely on using the phone to get what you need to survive: pizza, pop, and
the latest video games.

Often times, companies replace the digits in their phone numbers with characters to make their
phone numbers more memorable. Because apparently, it's easier to remember 416-BUY-MORE
than it is to remember 416-289-6673. Some companies even add extra digits or characters (like
604-PIZZABOX) but any digits after the 10th are irrelevant.

Since it's getting tedious to do the conversion by hand, write a program to help change all the phone
numbers in your phone book to the form xxx-xxx-xxxx, using the below image to assist you.

Input
Input consists of a series of test cases. The first line consists of an integer t, the number of test
cases. Following this are t lines consisting of alpha-numeric characters separated by hyphens,
representing valid phone numbers. No line is longer than 40 characters. Input will be contained in
the file s1.in.

Output
For each test case, output the phone number in the form xxx-xxx-xxxx to the screen.

Sample Input
5
88-SNOW-5555
519-888-4567
BUY-MORE-POP
416-PIZZA-BOX
5059381123

Sample Output
887-669-5555
519-888-4567
289-667-3767
416-749-9226
505-938-1123

Problem S2: Mouse Move

Most likely, you will notice that you have a mouse attached to your computer, which lets you
move the cursor around the screen. Your job is to get between the mouse and the cursor.

Suppose that the bottom left-hand corner of your screen is (0,0), and all points on the screen are
given by integer co-ordinates (x, y) where 0 <= x <= c and 0 <= y <= r. Thus, the top-right
corner of the screen is at position (c, r), bottom-right corner is (c, 0), and top-left corner is (0, r).

When a mouse is moved, it sends a pair of integers (a, b), indicating that the cursor should be
moved a units in the x-direction and b units in the y-direction. It is worth noting that this is
relative motion (i.e., how far to move) rather than absolute motion (i.e., where to move). It is
also worth noting that a and b may be positive, negative or zero.

You can assume the mouse starts at position (0,0). You job is to read input messages (i.e.,
relative motion positions sent by the mouse) and update the cursor to the new position on the
screen. Your output (to the screen) will be the position of the mouse after each move.

If the mouse hits the screen boundary, it stops moving in that direction. For example, if the
mouse is supposed to move (-100, -10) from its current position (30, 40), the final positions will
be (0, 30): the mouse will hit the left-hand side boundary, but still manages to move down.

Input is listed as pairs, the first pair being (c, r), followed by the relative motion pairs (x, y). The
input is terminated when the mouse moves (0,0). The input will be contained in the file s2.in.

Sample Input 1
100 200
10 40
-5 15
30 –30
0 0

Sample Output for Sample Input 1
10 40
5 55
35 25

Sample Input 2
30 40
30 40
-100 -10
0 0

Sample Output for Sample Input 2
30 40
0 30

Problem S3: Quantum Operations

Quantum computing is currently a hot topic in research. If they can be built, quantum computers
will have the ability to perform certain computing tasks much faster than any computer in existence
today. Fortunately, you won't need a quantum computer to do this question.

A fundamental concept in quantum computing is the idea of as a quantum operation. A quantum
operation can be essentially thought of as a matrix. Also, if you perform two quantum operations
in parallel on separate quantum data, this can be thought of a larger quantum operation. Thinking
of these operations in terms of matrices again, the resulting matrix from performing two matrices in
parallel is called the tensor product of the two matrices (using the symbol ⊗). This is different than
the normal product of matrices that you may have learned about.

In a tensor product, you are given two matrices (which are essentially two-dimensional arrays). We
will call them A and B, and we will represent the individual elements of these two matrices this
way:

�
�
�
�

�

�

�
�
�
�

�

�

=

mnmm

n

n

aaa

aaa

aaa

A

�

����

�

�

21

22221

11211

 ,

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

pqpp

q

q

abb

bbb

bbb

B

�

����

�

�

21

22221

11211

.

Notice that the size of matrix A is m×n (m rows and n columns), and the size of B is p×q.

The tensor product of these two matrices will be an mp×nq matrix (with mp rows and nq columns)
that looks like:

[] [] []
[] [] []

[] [] []�
�
�
�

�

�

�
�
�
�

�

�

=⊗

BaBaBa

BaBaBa

BaBaBa

BA

mnmm

n

n

�

����

�

�

21

22221

11211

,

where []Baij simply indicates that each element in B is being multiplied by ija .

Finally notice that the tensor product is not commutative, which means that changing the order of
matrices may change the answer (ABBA ⊗≠⊗).

For more than two matrices, we will define CBACBA ⊗⊗=⊗⊗)(, although it does not
technically matter, since the tensor product is associative.

Your task is to compute and output the tensor product of two or more given matrices.

Input

The first line of input contains the number of matrices, N, a positive integer. Then, there are N
blocks of lines describing the matrices in order.

In each block, the first line will contain two positive integers, r and c, separated by a space,
indicating the number of rows and columns, respectively. Then, the next r lines will denote the
rows, in order. Each line will contain c integers, separated by spaces. Input is contained in the file
s3.in.

Output

The output (to the screen) will be 6 integers in the following order:
• the maximum element in the tensor product
• the minimum element in the tensor product
• the maximum row sum (i.e., sum of entries in each row)
• the minimum row sum
• the maximum column sum
• the minimum column sum

You may assume that tensor product matrix will have no more than 1024 rows and no more than
1024 columns.

Input Output Actual Tensor Product
2
2 2
1 1
1 -1
2 2
1 0
0 1

1
-1
2
0
2
0

1 0 1 0
0 1 0 1
1 0 -1 0
0 1 0 -1

3
2 2
1 0
0 3
2 2
1 1
1 -1
2 2
1 0
0 1

3
-3
6
0
6
0

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 -1 0 0 0 0 0
0 1 0 -1 0 0 0 0
0 0 0 0 3 0 3 0
0 0 0 0 0 3 0 3
0 0 0 0 3 0 -3 0
0 0 0 0 0 3 0 -3

Problem S4: Pyramid Message Scheme

Spamway Inc. maintains a network of zombie computers to solicit and collect orders for its
various fine products. Each zombie computer is responsible for zero or more subordinate
zombies that it coordinates in these activities.

Spamway uses a simple communication strategy among its zombies for transmitting solicitations
and receiving orders. Each solicitation originates at Spamway's head zombie, which then
communicates it to each of its subordinates in turn, waiting to collect orders from one
subordinate before proceeding to the next. Each subordinate employs the same strategy - it sends
to and receives from each of its subordinates in turn.

For example, suppose that Home has two subordinate zombies named Alfred and Betty; Alfred's
subordinates are named Cindy and Dennis; Betty has no subordinates. This organization is
pictured below.

Home first sends to Alfred; Alfred then sends to Cindy; Cindy responds to Alfred; Alfred sends
to Dennis; Dennis responds to Alfred; Alfred responds to Home; Home sends to Betty; Betty
responds to Home.

Each message takes 10 seconds to be delivered. So the example given above would be completed
in 80 seconds. You have been retained by Spamway, who will pay you handsomely (in Spam
Bucks which may be redeemed for any of their valuable products) to help them reduce the time
necessary to solicit and collect orders. In particular, Spamway is considering a new strategy in
which each zombie sends out messages to each of its subordinates and waits for their responses
only after all messages have been sent.

Spamway's network administrator has captured a chronological list of the name of the recipient
of each message involved in a particular solicitation. For the example above, using the slow
strategy, this list would be: Alfred, Cindy, Alfred, Dennis, Alfred, Home, Betty, Home. (Note
that 8 messages at 10 seconds per message is 80 seconds.)

Using the new and improved strategy, Home sends to Alfred and Betty simultaneously, Alfred
sends to Cindy and Dennis at the same time as Betty is responding, Cindy and Dennis respond
simultaneously to Alfred and finally Alfred responds to Home. Using the new strategy,
Spamway needs only 40 seconds to accomplish the communication that takes 80 seconds using
the old strategy. Thus, Spamway can send twice as many solicitations and make twice as much
money.

Betty

Cindy

Alfred

Dennis
Home

Input

As input, you are given lists of names describing the order that messages are received using the
old Spamway strategy. The input contains the integer L, followed by L message lists. Each list
begins with an integer, n, identifying the number of message recipients in the list, followed by n
lines, each containing the name of a message recipient. Input is contained in the file s4.in.

Output

For each list you are to print out a single integer indicating the amount of time in seconds that
Spamway saves.

Sample Input
1
8
Alfred
Cindy
Alfred
Dennis
Alfred
Home
Betty
Home

Output for Sample Input

40

Problem S5: Pinball Ranking

Pinball is an arcade game in which an individual player controls a silver ball by means of
flippers, with the objective of accumulating as many points as possible. At the end of each game,
the player's score and rank are displayed. The score, an integer between 0 and 1 000 000 000, is
that achieved by the player in the game just ended. The rank is displayed as "r of n". n is the total
number of games ever played on the machine, and r is the position of the score for the just-ended
game within this set. More precisely, r is one greater than the number of games whose score
exceeds that of the game just ended.

You are to implement the pinball machine's ranking algorithm. The first line of input contains a
positive integer, t, the total number of games played in the lifetime of the machine. t lines follow,
given the scores of these games, in chronological order. Input is contained in the file s5.in.

You are to output the average of the ranks (rounded to two digits after the decimal) that would be
displayed on the board.

At least one test case will have t <= 100. All test cases will have t <= 100 000.

Sample Input
5
100
200
150
170
50

Output for Sample Input
2.20

Explanation for Sample Output
The pinball screen would display (in turn):

1 of 1
1 of 2
2 of 3
2 of 4
5 of 5

The average rank is (1+1+2+2+5)/5 = 2.20.

	phone
	mousemove
	quantum2
	pyramid
	pinball2

