
Problem A: Deficient, Perfect, and
Abundant
Input file: dpa.in 

 Output file: dpa.out

Write a program that repeatedly reads a positive integer, determines if the integer is
deficient, perfect, or abundant, and outputs the number along with its classification.

A positive integer, n, is said to be perfect if the sum of its proper divisors equals the
number itself. (Proper divisors include 1 but not the number itself.) If this sum is less that n,
the number is deficient, and if the sum is greater than n, the number is abundant.

The input starts with the number of integers that follow. For each of the following integers,
your program should output the classification, as given below. You may assume that the
input integers are greater than 1 and less than 32500.

Sample input
3 
4 
6 
12

Sample output
4 is a deficient number. 
 
6 is a perfect number. 
 
12 is an abundant number. 



Problem B: Divisibility by 11
Input file: div.in 

 Output file: div.out

Write a program which accepts as input a positive integer and checks, using the algorithm
described below, to see whether or not the integer is divisible by 11. This particular test for
divisibility by 11 was given in 1897 by Charles L. Dodgson (Lewis Carroll).

Algorithm:
As long as the number being tested has more than two digits, form a new number by:

deleting the units digit
subtracting the deleted digit from the shortened number

The remaining number is divisible by 11 if and only if the original number is divisible
by 11.

Note:
Leading zeroes are not considered part of the number and should not be printed.

As usual, the first number in the input indicates the number of positive integers that follow.
Each positive integer has a maximum of 50 digits. You may assume no leading zeroes exist
in the positive integers.

For each positive integer in the input, the output consists of a series of numbers formed as
a digit is deleted and subtracted, followed by a message indicating whether or not the
original number is divisible by 11. Outputs for different positive integers are separated by
blank lines.

Sample input
1 
12345678901234567900

Sample output
12345678901234567900 
1234567890123456790 
123456789012345679 
12345678901234558 
1234567890123447 
123456789012337 
12345678901226 
1234567890116 
123456789005 
12345678995 
1234567884 
123456784 
12345674 
1234563 
123453 
12342 



1232 
121 
11 
The number 12345678901234567900 is divisible by 11. 



Problem C: Pattern Generator
Input file: pat.in 

 Output file: pat.out

Write a program that repeatedly reads two numbers n and k and prints all bit patterns of
length n with k ones in descending order (when the bit patterns are considered as binary
numbers). You may assume that 30 >= n > 0, 8 > k >= 0, and n >= k. The first number in
the input gives the number of pairs n and k. The numbers n and k are separated by a single
space. Leading zeroes in a bit pattern should be included. See the example below.

Sample input
3 
2 1 
2 0 
4 2

Sample output
The bit patterns are 
 
10 
01 
 
The bit patterns are 
00 
 
The bit patterns are 
1100 
1010 
1001 
0110 
0101 
0011 



Problem D: When in Rome...
Input file: rom.in 

 Output file: rom.out

If the Roman Empire had not fallen, then Rome would surely have discovered electricity
and used electronic calculators; however, the Romans used Roman Numerals! Your task is
to implement a simple Roman Calculator which accepts two Roman Numerals and outputs
the sum in Roman Numerals. You may assume that numbers greater than 1000 will not
occur in the input. Output numbers greater than 1000 are illegal and should generate the
message CONCORDIA CUM VERITATE (In Harmony with Truth).

The input consists of a number, indicating the number of test cases, followed by this many
test cases. Each test case consists of a single line with two numbers in Roman Numerals
separated by a + along with an = at the end. There are no separating spaces.

For each test case the output is a copy of the input with the Roman Numeral that
represents the sum. Outputs for different test cases are separated by a blank line.

Roman Research

The Roman Numerals used by the Romans evolved over many years, and so there are some
variations in the way they are written. We will use the following definitions:

1. The following symbols are used: I for 1, V for 5, X for 10, L for 50, C for 100, D for 500,
and M for 1000.

2. Numbers are formed by writing symbols from 1. from left to right, as a sum, each time
using the symbol for the largest possible value. The symbols M, C, X, or I may be used
at most three times in succession. Only if this rule would be violated, you can use the
following rule:

When a single I immediately precedes a V or X, it is subtracted. When a single X
immediately precedes an L or C, it is subtracted. When a single C immediately
precedes a D or M, it is subtracted.

For example: II = 2; IX = 9; CXIII = 113; LIV = 54; XXXVIII = 38; XCIX = 99.

Sample input
3 
VII+II= 
XXIX+X= 
M+I=

Sample output
VII+II=IX 
XXIX+X=XXXIX 
M+I=CONCORDIA CUM VERITATE 



Problem E: Maximum Distance
Input file: max.in 

 Output file: max.out

Consider two descending sequences of integers X[0..n-1] and Y[0..n-1] with X[i] >= X[i+1]
and Y[i] >= Y[i+1] and for all i, 0 <= i < n - 1. The distance between two elements X[i] and
Y[j] is given by

d(X[i], Y[j]) = j - i if j >= i and Y[j] >= X[i], or 0 otherwise

The distance between sequence X and sequence Y is defined by

d(X, Y) = max{d(X[i], Y[j]) | 0 <= i < n, 0 <= j < n}

You may assume 0 < n < 1000.

For example, for the sequences X and Y below, their maximum distance is reached for i=2
and j=7, so d(X, Y)=d(X[2], Y[7])=5.

                     i=2 
                      | 
                      v 
          X     8  8  4  4  4  3  3  3  1  
                                               
          Y     9  9  8  8  6  5  5  4  3 
                                     ^ 
                                     | 
                                    j=7 

Part (a)

There is a maximum value of d(X, Y) over all sequences X and Y of length n. What property
must the sequences satisfy in order to reach this value? There is a minimum value of d(X,
Y). What property must the sequences satisfy in order to reach this value?

Part (b)

Write a program that repeatedly reads a pair of sequences of integers and prints the
distance between those sequences. The first sequence is the X sequence and the second is
the Y sequence. You may assume that the sequences are descending and of equal length. A
pair of sequences is preceded by a number on a single line indicating the number of
elements in the sequences. Numbers in a sequence are separated by a space, and each
sequence is on a single line by itself. As usual, the first number in the input gives the
number of test cases. Try to write an efficient program.

Part (c)

Give a very brief explanation of your program. Also, give a rough estimate of the maximum
number of comparisons between elements of the two sequences that your program
computes. (For example, n^2 can be considered a "rough estimate" of n^2 - 4.)



Sample input
2 
9 
8 8 4 4 4 3 3 3 1 
9 9 8 8 6 5 5 4 3 
7 
6 5 4 4 4 4 4 
3 3 3 3 3 3 3

Sample output
The maximum distance is 5 
 
The maximum distance is 0 


	CCC 1996 Stage 1_ Problem A
	CCC 1996 Stage 1_ Problem B
	CCC 1996 Stage 1_ Problem C
	CCC 1996 Stage 1_ Problem D
	CCC 1996 Stage 1_ Problem E

