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Abstract

Inspired by the Danza de los Voladores (Dance of the Flyers), a traditional Mexi-

can performance, we investigated an interesting dynamical phenomenon and conducted

this research. To the best of our knowledge, no relevant research related to this phe-

nomenon have been done up till now and the reasons behind the trajectory of the

performers are still unknown. In this study, a simple theoretical model is set up firstly

to qualitatively explain the phenomenon and a more realistic model is used to give out

more clear explanations. Secondly, numerical simulations are done and the results are

discussed in details. Finally, experiments are carried out to verify the results of simula-

tions. Throughout the research , scientific calculating languages such as MATLAB and

Mathematica are used to generate the figure, extract the data and analyze the video.

The final experimental results are in accordance with the simulation. The basic char-

acteristics, including the oscillation of the latitudinal angular motion, the asymptotic

motion, and the monotonic characteristics of the azimuthal angle of the phenomenon

are explained. In addition, the experimental data give rise to short discussions about

some interesting phenomena.

Besides directly explaining the questions we proposed and accurately describing the

characteristics of the motion, the results of this research have extra potential ben-

efits. Due to the abundance of pendula-related physics phenomena, this study can

offer explanation, guidance and directions for all kinds of future studies. Furthermore,

real world mechanical applications related to the crane pulleys, twisted earphones and

high-voltage wires can be understood more clearly based on the results of this research.

Some inspirations on theoretical physics can also be drawn from this research. Last

but not least, this research offers a simple but interesting model for physics discussions

and education. It can offer people a chance to comprehend analytical mechanics more

clearly.

Keywords: Pendulum, Unwinding motion, Azimuthal angle constraint, Experimenta-
tion, Kinematics characteristics
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1 Introduction

1.1 Some Inspiration

All this began when the team leader Zhaoyi Li was at a physics camp during the spring

of 2018, a question about the conical pendulum in an experiment class attracts his

attention. The original problem goes as follows:

“ Suppose the length of the pendulum is changing over time, and the period

T satisfies a linear relationship with the number of unwinding, n, find the

experimental formula T ∝ nα.”

Knowing the teacher’s intention is to do the experiment and get the relationship ex-

perimentally, Zhaoyi Li is fascinated by the theory behind this motion. The conical

pendulum motion is simple and easy to comprehend, but what if the pendulum un-

winds over time? The motion will be much more complex, and this phenomenon is

surely interesting to research on. After looking up for all kinds of materials online,

Zhaoyi Li found out that no preceding research related to this particular motion were

done and this research may bring up some fascinating discoveries.

Surprisingly, when Zhaoyi Li was at Stanford Summer College, he accidentally met a

physics instructor who is from Mexico and learned that there is a traditional Mexi-

can performance, the Danza de los Voladores, which contains similar physical phe-

nomenon to create magnificent art effects. This real-world application makes this re-

search more utilitarian and fun to conduct. It was not before long when Sifei Zhang

showed her interest to the phenomenon and joined the research, the group of two is

finally founded and the study is conducted.

1.2 Background Information

The Danza de los Voladores (Dance of the Flyers) , a traditional Mexican ritual, is a

plea for gods to end droughts. It starts with climbing of a tall pole and dancing. Then,

four performers jump off from the top of the pole with ropes tied on their feet. During

this process, they rotate around the pole as the rope is unwound from the pole[1], as

shown in Fig.1. Their velocities, as well as their relative positions to each other display

a change during the performance and they land on the ground with relatively small

velocity at the end of the performance.
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Figure 1 Danza de los Voladores (Dance of the Flyers)[2]

The motion of the dancers can be treated as a conical pendulum whose string length
depends on the turns it unwinds. As the system evolves through time, gravitational
potential continuously transforms into kinetic energy but the moment of inertia of the
whole system also increases, thus the angular velocity displays a oscillatory change, and
the trajectories of each single point of mass (performers) are unique.

The unwinding mechanism is carried out by the simple device on the top of the pole,
as shown in Fig.2.

Figure 2 Details of the pole
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As the ropes are wound on the pole, the constraining relationship exists that the rope

length is directly proportional to the azimuthal angle.

1.3 Significance of the study

1. The winding pendulum phenomenon occurs frequently in daily life, such as crane

pulleys and pendula that are twisted and not well functioning. The research can

offer inspiration, explanation and researching direction for these phenomena.

2. Pendula problems are an important portion of mechanics, the research can fill

a “missed piece” of the category of all pendula, giving experimental data and

explanations to pendula problems.

3. The research can offer explanation to the patterns and visual effects generated by

the performers in Danza de los Voladores, identifying security risks related to

the performance due to the sudden-sliding phenomenon.

4. The problem can offer insights to theoretical mechanics discussions, such as

whether a Lagrangian is “correct” when the motion cannot occur in real world.

5. The problem itself is an interesting physics model that is worth discussing. It can

offer more inspiration on physics classes or discussions and be beneficial to future

physics education.

3



1.4 Nomenclatures

For the convenience of discussion, different parts of the winding pendulum are referred
to as shown in Fig.3.

Figure 3 The winding pendulum model

The pole, or stick, is the middle part on which the string, wire, or rope is wound, a bob,
or point of mass is attached to the end of the string and moves. The platform is the
sustaining part on the top of the pole, over which the rope is crossed and suspended.
During the motion, it functions as not only a pulley to change the direction of the
tension on the rope, but also synchronize the motion of the four pendula. Its another
function is to avoid sudden sliding of the rope, which is explained in more details in
Part 3.2.3.
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1.5 List of Variables and Constants

Table 1 shows the name of variables included in this paper.

Table 1 List of Variables

Variable name Quantity Unit

t Time s

T Period s

m Mass of the bob kg

σ Line mass of the rope kg m−1

g Gravity constant kg s−2

T Tension N

λ Lagrangian Multiplier N

f Friction N

N Normal force N

l Length of the string m

R Radius of the pole m

r Radius of the platform m

L System Lagrangian J

H System Hamiltonian J

E Total energy J

K Total kinetic energy J

V Total potential energy J

Ueff Effective potential J

θ Azimuthal angle 1

θ̇ = ω Azimuthal angular velocity s−1

θ̈ Azimuthal angular acceleration s−2

φ Latitudinal angle 1

φ̇ Latitudinal angular velocity s−1

φ̈ Latitudinal angular acceleration s−2

a Shorter radius of ellipse m

b Longer radius of ellipse m

ρ Radius of curvature m

5



Variable Name Quantity Unit

α Auxiliary angle, arbitrary constant 1

β, n Arbitrary constant 1

µ Fraction coefficient of the pole 1

∆ Relative error 1

r Auxiliary length m

A,B,C,D,E,K,L Arbitrary constant 1

C,C1,C2 Constant in solutions 1

2 Theoretical Model

2.1 Overview

To simplify the problem[3], the first model is set up considering the case with only one

bob while excluding the effect of the thickness of the pole, the thickness of the rope and

the air resistance, i.e. consider the pole to be infinitely thin. Thus, the whole system

reduces to a system with only 2D.O.Fs φ and θ. This model can offer a simple way to

qualitatively explain the phenomenon.

The second and realistic model takes the radius of the pole into account and the rope

will unwind as the bob moves in a certain trajectory. Implementing this condition into

the model makes it more realistic and numerical calculations are done to explain the

phenomenon.

Finally, the question 1 mentioned at the beginning of the paper is briefly discussed, and

the modeling of the phenomenon in the Danza de los Voladores is done.
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2.2 Simplified Model

2.2.1 The setup of the model

The diagram of the simplified model is shown in Fig.4.

Figure 4 The two degrees of freedoms in the model

By the constraint condition:
l ≡ Rθ (2.1)

We can take the derivative on both side and get

l̇ ≡ Rθ̇ (2.2)

l̈ ≡ Rθ̈ (2.3)

The Lagrangian of the system is:

L =
mR2

2
θ̇2 +

mR2

2
θ̇2θ2 sin2 φ+

mR2

2
φ̇2θ2 +mgRθ cosφ (2.4)

7



Since the Lagrangian satisfies ∂L
∂t

= 0, the system is conservative. Then, we can solve
the E-L equations of the motion numerically:

d

dt

∂L
∂θ̇

=
∂L
∂θ

d

dt

∂L
∂φ̇

=
∂L
∂φ

(2.5)

By using the following initial conditions in Table 2, quantitative answer will be given.

Table 2 Initial conditions of the simulation

Variables g R m θ0 θ̇0 φ0 φ̇0

Initial values 1 1 1 0.001 0 π
8

0

From Fig.5 and Fig.6, we can see that the latitudinal angle is oscillatory decreasing,
and the longitudinal angle is relatively unstable at the beginning of the motion, but
tends to a certain limit since the conservation of angular momentum ensures the bob
to have a gradually decreasing speed.

Figure 5 φ v.s. t plot of the result

Figure 6 θ v.s. t plot of the result
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This can be seen from a log-log plot of the φ v.s. t relation, as shown in Fig.7.

Figure 7 log-log plot of the result

The above result is convincing because when the time is enough large ( t � 0), the
radius of the pole is relatively small compared with the length of the thread. i.e. R� l.
Thus, we can start from suitable approximation of the equations of motions, which is,
explicitly: {

g cosφ = Rθ̈ +Rθ2θ̈ sin2 φ+Rθ2θ̇φ̇ sin 2φ

g sinφ = −φ̈Rθ − 2φRθ̇
(2.6)

Since R � l = Rθ, θ � 0, we can drop the term Rθ̈ since it is the only term doesn’t
contain θ on the RHS of. Thus, we can get:

g

R
cosφ = θ2

(
θ̈ sin2 φ+ θ2φ̇θ̇ sin 2φ

)
g

R
sinφ = −φ̈θ − 2φθ̇

(2.7)

Next, we can average the motion within a period of revolution:

f(t) =

∮
f(t) dt∮

dt
(2.8)

Thus, from the linearity of the averaging operation, we can get:
g

R
cosφ = θ2θ̈ sin2 φ+ θ2φ̇θ̇ sin 2φ

g

R
sinφ = −φ̈θ − 2φθ̇

(2.9)
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On the other hand, since φ is oscillatory approaching a certain value, the average value
of φ(t) will be a constant, denoted by φ. The average value of functions containing
only φ, such as sinφ(t) and cosφ(t) will be sinφ and cosφ, etc. Thus, we can get the
following relationship: 

g

R
cosφ = θ2

(
θ̈ sin2 φ+ φ̇θ̇ sin 2φ

)
g

R
sinφ = −φ̈θ − 2φθ̇

(2.10)

Since the LHS of equation is a constant, it is apparent that the quantities on the RHS,

θ̈ sin2 φ and φ̇θ̇ sin 2φ, should be approximately on the same order. Thus we can write
it as

φ̇θ̇ sin 2φ = Dθ̈ sin2 φ (2.11)

g

R
cosφ = θ2θ̈ sin2 φ (1 + D) (2.12)

where D is some arbitraty constant. Due to the fact that θ̈(t) is extremely small and
sinφ is a number with a small oscillation term when t is big enough, if we model these
quantities as {

θ̈ = ε1 sin(t)

sin2(φ) = ε2 sin(t) + A
(2.13)

The following relationships hold:

ε1 sin(t) (A+ ε2 sin (t)) (2.14)

=ε1A sin(t) + ε1ε2 sin2(t)

=εA sin(t)

=Aε sin(t)

=A+ ε2 sin(t) ε sin(t)

Thus, it is clear that we can move θ̈(t) outside of the average value:

φ̇ θ̇ sin 2φ = D θ̈ sin2 φ (2.15)

Finally, from Equation 2.12, we arrive at

C = θ2θ̈ sin2 φ(1 + D) (2.16)

Where C = cosφ. Since f(φ(t)) = f(φ) as proven above, we finally prove that

C = θ2θ̈E(1 + D) (2.17)

10



Which is
θ2θ̈ = K (2.18)

Where K is some constant satisfying

K =
E(1 + D)

C
(2.19)

Thus, we can solve the differential equation

θ̈ =
K
θ2

(2.20)

Solving the equation, we get that y equals to the solution of the equation:K log
(
−K + θC1 +

√
C1

√
C1 − 2K

θ
θ
)

C
3
2
1

+
θ
√

C1 − 2K
θ

C1


2

= (x+ C2)2 (2.21)

Since Equation 2.21 is too complex to solve, the trial function θ = αxβ is implemented

and we get
(β − 1)βαxβ−2 = (Kα)−2 x−2β (2.22)

From 2.22 we get {
(β − 1)βα = (Kα)−2

β − 2 = −2β
(2.23)

Solving the system of equations 2.23, we get
α =

(
2

9K

)− 1
3

β =
2

3

(2.24)

Which means that

θ =

(
2

9K

)− 1
3

t
2
3 (2.25)

To verify the solution, we can also approximate the problem as a simple conical pen-
dulum problem, as shown in Fig.8, we can get:

mω2l sinφ = mg tanφ (2.26)

11



Figure 8 Free body diagram of the conical pendulum

Which is

θ̇ =

√
g

l cosφ
(2.27)

By using the constraint condition l = Rθ, the relationship becomes:

θ̇ =

√
g

Rθ cosφ
(2.28)

Where L =
√

g
Rθ

. Organize the equation, we can get a differential equation of the form:

θ̇ =
L
θ

1
2

(2.29)

We can solve this equation and get

θ(0) = (3/2)
2
3 (Lt+ C)

2
3 (2.30)

12



From the initial condition
θ(0) = 0 (2.31)

We deduce that C = 0, thus
θ(0) = (3/2)

2
3 (Lt)

2
3 (2.32)

Since in this approximated case, θ = θ, θ̇ = θ̇, and θ̈ = θ̈, it is clear that when t� 0,

θ ∝ t
2
3 (2.33)

θ̇ ∝ t−
1
3

θ̈ ∝ t−
4
3

These results can be verified using the numerical calculations done above. Fig.9 shows
the result of a log-log plot of the function θ(t) and the linear best fit.

Figure 9 Linear fitting of the log-log plot

The result of the linear best fit is given as the following equations.

θ = αtβ (2.34)

log θ = β log t+ logα (2.35)

13



 β = 0.66 ≈ 2

3
α = e1.77 = 5.88

(2.36)

2.2.2 A Seemingly Paradoxical Problem

Something unexpected occur when proceeding the above calculations: the angular mo-

mentum of the system seems not being conserved, as shown in Fig.10.

Figure 10 p v.s. t plot of the simulation

the plot of the angular momentum M versus time, which can also be verified from the

fact that L explicitly contains θ, thus

∂L
∂θ

= mφ̇2R2θ + gmR cosφ+mR2θθ̇2 sin2 φ 6= 0 (2.37)

Since the model can be treated as a conical pendulum satisfying the condition r ∝ θ,

the only external force should be the gravitational force and the tension on the rope.

This seemingly paradoxical problem can be explained since the simplified system is

not necessarily conservative. The end of the rope is moving and the external tension

force which keep the system obey the constrain conditions is doing work on the system.

14



Thus, the Lagrangian method couldn’t be used in this problem.

However, this model can still be used as it is a relatively good approximation of the

original problem when the time t is large enough, i.e. θ is large enough. Taking the

t→∞ limit of the Lagrangian in Part 2.4, we can see that:

lim
t→∞

(
1

2
m(φ̇Rθ −Rθ̇ sinφ)2 + 1

2
m(Rθ̇ −Rθ̇ cosφ)2 + gmRθ cosφ+

1

2
mR2θ2θ̇2 sinφ2

)
(2.38)

=
1

2
mφ̇2R2θ2 +

1

2
mR2θ̇2 + gmRθ cosφ

1

2
mR2t2θ̇2 sinφ2

2.3 Solution to the Original Problem

In the original question in Part 1.1, we have the following relationships:

T =
2π

ω
∝ ω−1 (2.39)

n =
θ

π
∝ θ (2.40)

Thus the problem becomes simply dealing with the following equation:

θ̇ ∝ θ−α (2.41)

Which is already shown in Part 2.4.1 that

θ̇ ∝ θ−
1
2 (2.42)

Note that the result corresponds to that in the conical pendulum[4][5] as l� 0

θ̇ =

√
g

Rθ cosφ
(2.43)

2.4 A Model involving the involute

2.4.1 The setup of the model

To simulate the phenomenon more accurately, Fig.11 and Fig.12 show the new model.

Fig.11 gives out the Free body diagram of the forces acting on the bob and Fig.12 gives

out the coordinates θ and φ.

15



Figure 11 Free body diagram of the model

Taking the thickness of the pole into account, the motion of the bob is something similar

to a so-called involute of a circle, which is the trajectory of the point tied to the circle

with an imaginary string as the string is unwound from the circle.[6] We can get the

new Lagrangian, as shown in Equation 2.44.

Figure 12 The two degrees of freedoms in the model

16



L = gmRθ cosφ+
mR

2
(φ̇θ − θ̇ cosφ)2 +

mR2

2
θ2θ̇2 sinφ2 +

mR

2
θ̇(1− sinφ)2 (2.44)

Solving the Equations 2.5, which is, explicitly:

{
−g cosφ+ 2φ̇Rθ̇ + φ̈Rθ +R(sinφ(φ̇2θ − 2θ̈) + φ̇θ2θ̇ sin 2φ+ sin2 φ(θ2θ̈ + θθ̇2 + θ̈) + φ̇2 − θ + θ̈) +Rθ̈ cos2 φ = 0

g sinφ−R cosφ(θθ̇2 sinφ+ θ̈) + 2φ̇Rθ̇ + φ̈Rθ = 0

(2.45)
These equations can be solved numerically, and the change of θ through time is plotted,
as shown in Fig 13.

Figure 13 θ v.s. t plot.

The angle θ is monotonically increasing, and the angular velocity θ̇ is always greater
than zero, which is reasonable due to the conservation of energy.

17



Since φ is more interesting to discuss, the following calculations used different sets of
initial conditions as shown in Table 3, Table 4, Table 5,and Table 6. The results are
collected and shown in Fig.14, Fig.15, Fig.16 and Fig.17.

Table 3 Initial conditions with different values of θ̇0

θ̇0 t g R m θ0 θ̇0 φ0 φ̇0

1 100 1 1 1 0.1 0 π
32

0
2 100 1 1 1 0.1 1 π

32
0

3 100 1 1 1 0.1 4 π
32

0
4 100 1 1 1 0.1 16 π

32
0

5 100 1 1 1 0.1 64 π
32

0
6 100 1 1 1 0.1 256 π

32
0

Table 4 Initial conditions with different values of φ0

φ0 t g R m θ0 θ̇0 φ0 φ̇0

1 100 1 1 1 0.1 10 π
64

0
2 100 1 1 1 0.1 10 π

32
0

3 100 1 1 1 0.1 10 π
16

0
4 100 1 1 1 0.1 10 π

8
0

5 100 1 1 1 0.1 10 π
4

0
6 100 1 1 1 0.1 10 π

2
0

Figure 14 φ v.s. t plot with different values of θ̇0

Figure 15 φ v.s. t plot with different values of φ0

18



Table 5 Initial conditions with different values of φ̇0

φ̇0 t g R m θ0 θ̇0 φ0 φ̇0

1 100 1 1 1 0.1 10 π
32

0
2 100 1 1 1 0.1 10 π

32
1

3 100 1 1 1 0.1 10 π
32

2
4 100 1 1 1 0.1 10 π

32
4

5 100 1 1 1 0.1 10 π
32

8
6 100 1 1 1 0.1 10 π

32
16

Table 6 Initial conditions with different values of θ0

θ0 t g R m θ0 θ̇0 φ0 φ̇0

1 100 1 1 1 0.1 10 π
32

0
2 100 1 1 1 2.1 10 π

32
0

3 100 1 1 1 4.1 10 π
32

0
4 100 1 1 1 6.1 10 π

32
0

5 100 1 1 1 8.1 10 π
32

0
6 100 1 1 1 10.1 10 π

32
0

Figure 16 φ v.s. t plot with different values of φ̇0

Figure 17 φ v.s. t plot with different values of θ0

Apparently, the latitudinal angle tends to some fixed number[7] as time tends to infinity,
this number doesn’t depend on θ0 or φ̇0 and is further discussed in Part 2.4.3.

2.4.2 Final results of the simulation

Using the calculated result in Part 2.4, a parametric plot corresponding to the overview
of the trajectory of the pendulum bob can be done. The mathematical formulation of
the plot is: {

x = R cos θ + θR sin θ sinφ

y = R sin θ − θR cos θ sinφ
(2.46)

19



Whereas the involute of a circle, Equation 2.47 is also plotted for comparison in Fig.18,
Fig.19, Fig. 20, and Fig.21. {

x = R cos θ + θR sin θ

y = R sin θ − θR cos θ
(2.47)

Figure 18 Trajectory top view, t = 0 . . . 2 Figure 19 Trajectory top view, t = 0 . . . 50

Figure 20 Top view of trajectory with t = 0 . . . 200

20



Figure 21 Trajectory with comparison involute of a circle in different instances

To make the changing of the angle φ clear, a side-view plot can also be done paramet-
rically by calculating l sinφ and l cosφ, as shown in Fig.22 and Fig.23.

Figure 22 Trajectory side view, t=0...2 Figure 23 Trajectory side view, t=0...200

These graphs give us an interesting insight that though the amplitude of oscillation of
φ, Aφ, is gradually decaying towards zero, the actually longitudinal oscillation, namely
lAφ is actually increasing since

lAφ = RθAφ

A 3D graph can also be plotted parametrically and shown in Fig.24 and Fig.25.

Figure 24 3D parametric plot with t = 0 · · · 10 Figure 25 3D parametric plot with t = 0 · · · 200
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2.4.3 Discussion of the possible values of φ

It is interesting that the φ angle tends to a certain value regardless of initial conditions.
In this paragraph, we will illustrate this phenomenon more quantitatively[8][9].
The mechanical energy is conserved since the pole doesn’t do work on the rope and the
rope is gradually unwound in a involute motion. Alternatively, this can be also seen
from the time independence of the Hamiltonian[10]:

H =
n∑
i=1

qipi − L (2.48)

=
1

2
m(φ̇Rθ −Rθ̇ sin2 φ) +

1

2
m(Rθ̇ −Rθ̇ cos2 φ)− gmRθ cosφ+

1

2
mR2t2θ̇2 sin2 φ

Where
∂H
∂t

= 0. Thus, the total energy equals to the initial energy:

E0 = gmRθ0 cosφ0+
mR

2
(φ̇0θ0− θ̇0 cosφ0)2+

mR2

2
θ2

0 θ̇
2
0 sinφ0

2mR

2
θ̇0(1−sinφ0)2 (2.49)

In a macroscopic view, the model can be approximated to a spherical pendulum[11],
i.e. a point of mass with mass m, subjected to a vertically placed gravitational field
and constraint to move only in a sphere of radius l.

The effective potential, Ueff can be calculated with the following steps, since the La-
grangian of a spherical pendulum is:

ml2θ̇

2
+

1

2
ml2 sin2 θφ̇2 −mgl cos θ (2.50)

Thus, by dropping the kinetic energy term ml2θ̇
2

, we can spot that the effective potential
Ueff .

Ueff =
1

2
ml2 sin2 θφ̇2 −mgl cos θ (2.51)

The range of motion of the angle φ can be made clear by the boundary condition
E > Ueff , whose boundary is determined by the equation E = Ueff , which is explicitly:

E =
1

2
ml2φ̇2 sin2 θ −mgl cos θ (2.52)

This is a quadratic equation and will have at most two solutions, which determine the
upper and lower bounds of the angle φ. Using the substitution x = cosφ and solving
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Equation 2.52, we can get two solutions:
x1 = −

gm+
√
m(g2m− 2Eθ̇2 + l2mθ̇4)

lmθ̇2

x2 =
−gm+

√
m(g2m− 2Eθ̇2 + l2mθ̇4)

lmθ̇2

(2.53)

Taking the limit l→∞, we can get {
x1 = −1

x2 = 1
(2.54)

It is obvious that the angle φ would not exceed the range (0, π) regardless of the initial
conditions. Now, to be more accurate, we should take the change of l in to account by
simply plugging in the relationships 2.55 we have proven above:

θ = kt
2
3 (2.55)

θ̇ =
2

3
kt−

1
3

Where k is a constant satisfying k =
(

3
2

) 2
3 L and L is the constant that can be deter-

mined from Equation 2.29. We can get:


x1 =

−9mg +

√
16m2k6R2 + 81m2g2 − 72mEk2t−

2
3

4k3mR

x2 =
−9mg +

√
16m2k6R2 + 81m2g2 − 72mEk2t−

2
3

4k3mR

(2.56)

Taking the limit t→∞, we can get:


x1 =

−9g −
√

16k6R2 + 81g2

4k3R

x2 =
−9g +

√
16k6R2 + 81g2

4k3R

(2.57)

which gives the upper and lower bounds of φ.
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2.5 Model of the original problem

The original model of the Danza de los Voladores includes four identical pendula
connected to a spinning square platform. Some minor modifications, including the
kinetic energy of the spinning platform should be taken into account, as shown in
Fig.26.

Figure 26 Bottom view of the platform

The new Lagrangian is:

L = 4gmRθ cosφ+ Iθ̇2 + 2mR2(φ̇θ − θ̇ sin2 φ) + 2mR2θ2θ̇2 sin2 φ+ 2mR2θ̇(1− cosφ)2 (2.58)

Where I is the moment of inertia of the platform. This modification doesn’t affect
much on the original problem, where the mass is simply multiplied by a factor of 4 and
the effect of the term Iθ̇2 will be insignificant when 2mR2θ2 � I. Thus, the Involute
model in Part 2.4 can give a relatively accurate prediction of the motion.
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3 Experiments

3.1 Overview

In this session, the experiments are carried out to verify the theoretical model and to
offer a direct observation of the phenomenon. The motion of the winding pendulum is
created and the data of seven separate trials are extracted. The data are then analyzed
with computer to verify the theoretical model. Finally, a short discussion about the
sudden-sliding problem of the thread is discussed.

3.2 Experiment setup

To achieve the goal, common daily materials, such as paper towel roll, light bulb,
woolen thread, printing paper, glue and scale weights are used to create the dynamic
system, as shown in Fig.27. Torches and slow motion cameras are used to keep track of
experimental data where as computational programs are employed for data processing
and analysis of the results.

Figure 27 Materials used in the experiment

In order to explore the effect of different R and m, a set of scale weights and poles with
various radii are used. To possibly reduce the effect of fraction between the pole and
the thread, poles with different materials are utilized.
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The pole is fixed on a stand over a table such that the pendulum can swing freely, as

shown in Fig.28. Two slow motion cameras are set up directly below and beside the

pole respectively to trace the angle θ and φ.

Figure 28 Experimental setup

Using this method, seven sets of data are gathered, including the time dependency of θ

and φ. The initial conditions of the coordinates: φ, φ0, θ, and θ0 can be approximated

by their respective calculated values at the very beginning of the releases.

3.2.1 Trial 1&2

For convenience, experimental data was extracted from the video manually by locating

points of motion in different instances using a Mathematica locator program. The

extracted plots are shown in the following figures.
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Figure 29 Trajectory of the bob in Trial 1

Figure 30 Trajectory of the bob in Trial 2

A simple calculation φ = arctan y
z

is done and a program is implemented to ensure
the monotonic increasing of the function (due to the none subjectivity of the arctan
function), from which we get the change of φ over time, which is plotted as follows:
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Figure 31 φ v.s. t plot of trial 1 Figure 32 φ v.s. t plot of trial 2

A initial observation clearly indicates the decaying oscillation of the φ coordinate
through time and θ with changing slope, which exactly matches the predicted phe-
nomenon. On the other hand, in a larger time scale, the motion shows a decay in
angular velocity, mainly due to the effects of the non-conservative forces.
To verify the ratio relationship of θ, θ̇ and time, the data can be converted to a log-log
scale and a linear fit is done to determine the coefficients α and β.

The plot of the linear fitting function and the original data is shown in Fig.33 and
Fig.34.

Figure 33 Linear fit of the log-log plot 1
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Figure 34 Linear fit of the log-log plot 2

The calculated values of α and β are, respectively β = 0.67 ≈ 2

3
α = e0.58 = 5.88

(3.1)

 β = 0.68 ≈ 2

3
α = e0.58 = 1.03

(3.2)
3.2.2 Trial 3-7

In order to obtain more accurate results, a light is attached to the bob and the bob
is re-weighted to compensate the possible errors as shown in Fig.35. Then, videos are
recorded in slow motion with the frames extracted and analyzed using MATLAB. By
locating the pixel with the greatest intensity, the data of the bob’s position can be
extracted from the video. The value of the constant R can be simply determined by
counting the pixels as shown in Fig.36.

Figure 35 The light used to trace the po-
sition of the bob

Figure 36 The way to determine R
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Table 7 shows the conditions of the experiment.

Table 7 The conditions of the experiment

Variables g R m θ0 θ̇0 φ0 φ̇0

Values 9.8 0.01 0.01 π
2

0 π
4

0

After the slow-motion videos are recorded, the frames are extracted from the video.
Binarization and image-addition are processed to provide a more intuitive view of the
coordinates’ relative changes, which are shown in Fig.37 and Fig.38.

Figure 37 Trial 3 Overview Figure 38 Trial 3 Sideview

30



The largest experimental errors are caused by the limit of the visual angle of the camera,
which gives rise to the times when the bob is out of the edge of the recording window.
When nothing is present in the range losing track of the bob, the program will generate
much noise, as shown in the following graphs.

Figure 39 Trial 3 θ with noise Figure 40 Trial 3 α with noise

A filtering program, as attached in the appendix, is implemented to reduce the noise.
The results are shown in Fig.41 and Fig.42.

Figure 41 Trial 3 θ with noise reduced Figure 42 Trial 3 α with noise reduced

The filtrated data of motion in trials 3-7 are shown in Fig.43 and Fig.44, respectively.
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Figure 43 The overview data of motion of five trials 3-7

3

4

5

6

7

Figure 44 The side-view data of motion of trials 3-7

3.2.3 About the sliding problem

A strange phenomenon occurs during the experiment, as highlighted in Fig.45. If the
radius R is large and the initial angular velocities θ̇ and φ are comparatively small, the
rope will display a rapid unwinding and sliding around the pole accompanied with the
bob falling directly to the ground.
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Figure 45 Photographs of the sudden-sliding phenomenon

A possible explanation can be given to interpret the cause of this phenomenon. The
tension on the string can be calculated through the method of Lagrangian multiplier
with the following procedure.

Introduce a new coordinate l, the length of the rope which satisfies the constraint
relationship l = Rθ, i.e. f(l, R) = l − Rθ = 0. By introduce the Lagrangian multiplier
λ, we can get the following equations of motion:

d

dt

∂L
∂θ̇

=
∂L
∂θ
− λR

d

dt

∂L
∂φ̇

=
∂L
∂φ

d

dt

∂L
∂l̇

=
∂L
∂l

+ λ

l −Rθ = 0

(3.3)

From the first equation, we can get the relationship:

λ = T =
ml

R
sinφ(2l̇θ̇ sinφ+ l(2θ̇φ̇ cosφ+ θ̈ sinφ)) (3.4)

=mθ sinφ(2Rθ̇2 sinφ+Rθ(2θ̇φ̇ cosφ+ θ̈ sinφ))

which gives out the relationship between the quantity of motions and the tension on the
string. On the other hand, during the unwinding process, the rope is not necessarily
horizontally wound on the pole, but with some tilting angle instead. This makes the
point of contact between the pole and the thread a part of an ellipse, in the zoomed
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experiment picture (Fig.46). The curvature radius ρ satisfies:

ρ =
b2

a
=
R2 cscφ

R
= R cscφ (3.5)

Figure 46 Zoomed diagram of the thread

Thus, suppose the line mass of the rope is σ, for a small piece of rope with length dl ,
the following calculations can be done to get the relationship between these quantities.

dθ

2
2T = dN =

df

µ
(3.6)

To avoid sliding, the following inequality should hold.

gdm < df ≤ µTdθ (3.7)

gσdl ≤ µT
dl

R
(3.8)
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Thus, simplify the relation, we can get:

gσ ≤ µ
T

ρ
(3.9)

Since ρ = R cscφ holds as shown in Fig.3.2.3, we have

gσ ≤ µ
T

R cscφ
(3.10)

.

Figure 47 Relationship between rhp, a and b

Therefore, it is clear that why the radius of the pole should not be too large and the
rope should not be too heavy in order to recreate the phenomenon.

However, in the Danza de los Voladores, due to the existence of the platform, this
phenomenon won’t occur. The platform’s own moment of inertia ensures a relatively
big value of the tension on the string, whereas the edge of the platform also serves as
pulleys, changing the direction of the tension and making the tangent point vertical
to the surface of the pole. The ropes are also thick enough to ensure that lower ropes
give upper ropes normal force at the beginning of the motion. All of these conditions
reduce the possibility of the occurrence of this sudden-sliding phenomenon and make
the performance a much safer activity.
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3.3 Data Analysis

3.3.1 Collection of the data

The longitudinal (azimuthal) angle is relatively simple to extract, and the change of θ
in the five trials is plotted and shown in Fig.48.

Figure 48 The changing of θ over time

To determine the latitude, an auxiliary angle, namely α and an auxiliary length r are
used, which are defined as the diagram shown below (Fig.49).
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Figure 49 The definition of α, r

These quantities can be extracted respectively by Mathematica programs. The results

of the five trails are plotted and shown in Fig.50, respectively.

Figure 50 The changing of α over time

The latitude can now be extracted in two ways, namely, using the constraint relation-
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ship and the measured rope length from bottom to determine the value of sinφ, thus

determining φ. By using the equation

θ = arctan

(
l sinφ sin θ

l cosφ

)
= arctan

(
tanα

sin θ

)
(3.11)

Alternatively, it is possible to measure φ directly at a fix position of loop, and convert

the time scale with the already-known function θ(t), by using

l cosφ = r cosα (3.12)

⇒ φ = arccos
(r cosα

l

)
For a better program performance, the data extracting is confined in one visual angle,
which is the top view one. The φ v.s. t plots of trials 3-7 are done below in Fig.51.

Figure 51 The changing of φ over time

A Mathematica program is used (as shown in the Appendix) to convert the coordinates,
interpolate the points and numerically differentiate the interpolation function for θ̇, φ̇,
θ̈ and φ̈, which are then plotted as shown in Fig.52, Fig.53, Fig.54, and Fig.55 below.
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Figure 52 φ̇ v.s. t of five trials Figure 53 φ̈ v.s. t of five trials

Figure 54 θ̇ v.s. t of five trials Figure 55 θ̈ v.s. t of five trials

The results above clearly show the patterns achieved in the numerical simulation.

3.3.2 Error Analysis

An error analysis is done to verify the theoretical part. Starting from mathematically
deducing the uncertainty, the x and y coordinates can be separately extracted and
treated as two independent variables.

φ = arcsin
r

Rθ
(3.13)

= arcsin

√
x2 + y2

R arctan x
y
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The uncertainty of x ad y can be determined by formulae:
∆x =

√∑5
i=1 (xi − x̄)

5

∆y =

√∑5
i=1 (yi − ȳ)

5

(3.14)

Where x̄ = x, ȳ = y. We can get the expression of the uncertainty by taking the
derivatives of the interpolation of φ as follows:

∆φ =

√(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

(3.15)

=∆x

 y + 2x arctan
(
y
x

)√
1− (x2+y2)2

arctan2 ( y
x)

arctan2
(
y
x

)


2

+ ∆y

 −x+ 2y arctan
(
y
x

)√
1− (x2+y2)2

arctan2 ( y
x)

arctan2
(
y
x

)


2

(3.16)

=

√
∆yx2 + ∆xy2 + 4(∆x −∆y)xy arctan

(
y
x

)
+ 4(∆xx2 + ∆yy2) arctan2

(
y
x

)
arctan2

(
y
x

)
(−(x2 + y2)2 + arctan2

(
y
x

)
)

According to the relationship above, the error can be calculated and plotted in Fig.56.

Figure 56 Calculated Error

The modified function in the range of the error function is plotted for comparison with
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the calculated function, as shown in Fig.57.

Figure 57 Comparison of the modified φ and the simulated φ

It is clear that the contour of the plot and oscillating frequencies of the theoretical and
experimental motion are the same at the beginning. Then the experimental value falls
in a relatively steep speed, which should be attributed to the air resistance and friction
which are causing energy losses of the system. Thus, the φ angle will gradually tend to
zero. Clearly, the theoretical is appropriate to explain this oscillating phenomenon and
the energy loss effect can be studied more in future researches.
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4 Conclusions

Through the theoretical part, we set up a valid physical model to address the phys-
ical phenomenon in the Danza de los Voladores which has not been previously
studied. The characteristic oscillatory motion of the coordinates and the horizontal
asymptote are studied by using appropriate approximations. Then, experiments are
carried out which successfully verify the theoretical model, during when some minor
problems are addressed by theory and the errors are within reasonable and acceptable
range. Throughout the research, numerical simulations are also employed to prove the
theories. Based on the results of the research, two major conclusions could be made:

(1) The motion have non-conservative angular momentum, with a monotonic increasing
angular velocity, but oscillatory angular acceleration.

(2) The latitude angle φ is oscillatory and asymptotic during the motion, with a limit
depending on the initial conditions.

5 Prospect

No study related to this phenomenon is done to the best of our knowledge and the
research method used in this paper are based on the knowledge of our general physics
honor course, analytical mechanics and interest in physics. Scientific computing soft-
ware such as Mathematica and MATLAB are employed throughout the research. Beside
the theory is established, analyzed and verified, experimental errors inevitably occurs
during the study, such as the process of extracting the velocities of the bob. Also, the
chaotic motion[12] is not taken into account using the current model. Thus, the research
can be improved soon in the future with the knowledge of more advanced mechanics
courses, more skills in computation and better equipment to conduct the experiments.

This phenomenon, coincidentally discovered, is explainable based on the model in this
paper but not completely understood yet due to the complexity of the mathemati-
cal structure and quantities such as the Lagrangian. A better understanding of this
phenomenon can help people understand more about the mathematical formulation of
analytical mechanics and the correlation between math and physics. It can also help
addressing more philosophical problems such as “If a physics problem is valid math-
ematically, is it ‘physical’?”, “Can every ‘math problems’ be made physical by some
means?” and “What is the meaning of being ‘physical’?” Thus, it is worth future
research with more powerful analyzing tools and knowledge on physics.
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(*CommonArea*)
Clear["`*"];
tp = 20000;
cond = {td → θ'[t], t → θ[t], p → ϕ[t], pd → ϕ'[t], m → 1, R → 1, g → 1};
xcond = {td → θ'[t], t → θ[t], p → ϕ[t], pd → ϕ'[t]};
rcond = {θ''[t] → tdd, θ'[t] → td, θ[t] → t, ϕ[t] → p, ϕ'[t] → pd, ϕ''[t] → pdd};

(*Sphereical Pendulum Version*)

L =
1

2
m pd2 l^2 + g m l Cos[p] +

1

2
m l^2 td2 Sin[p]2;

H =
1

2
m pd2 l^2 - g m l Cos[p] +

1

2
m l^2 td2 Sin[p]2;

(*Simplified Version*)

L =
1

2
m pd2 R2 t2 +

1

2
m R2 td2 + g m R t Cos[p] +

1

2
m R2 t2 td2 Sin[p]2;

EE =
1

2
m pd2 R2 t2 +

1

2
m R2 td2 - g m R t Cos[p] +

1

2
m R2 t2 td2 Sin[p]2;

(*Revolute Version*)L =
1

2
m pd R t - R td Sin[p]^2 +

1

2
m R td - R td Cos[p]^2 + g m R t Cos[p] +

1

2
m R2 t2 td2 Sin[p]2;

H =
1

2
m pd R t - R td Sin[p]^2 +

1

2
m R td - R td Cos[p]^2 -

g m R t Cos[p] +
1

2
m R2 t2 td2 Sin[p]2;

P = m R^2 t^2 Sin[p]^2 td;

Eva = Evaluate@{D[L, t], D[L, td], D[L, p], D[L, pd]};
Equ = Eva /. cond;
Equ1 = Equ[[1]] == D[Equ[[2]], t];
Equ2 = Equ[[3]] == D[Equ[[4]], t];
s1 = NDSolve[{Equ1, Equ2, θ'[0] ⩵ 0,

ϕ'[0] ⩵ 10, θ[0] ⩵ 0.001, ϕ[0] ⩵ 0.001}, {θ, ϕ}, {t, 0, tp}];

s2 = NDSolveEqu1, Equ2, θ'[0] ⩵ 0, ϕ'[0] ⩵ 10, θ[0] ⩵ 0.001, ϕ[0] ⩵ Pi  4,

{θ, ϕ}, {t, 0, tp};

s3 = NDSolveEqu1, Equ2, θ'[0] ⩵ 0, ϕ'[0] ⩵ 10, θ[0] ⩵ 0.001, ϕ[0] ⩵ Pi  3,

{θ, ϕ}, {t, 0, tp};

s4 = NDSolveEqu1, Equ2, θ'[0] ⩵ 0, ϕ'[0] ⩵ 10, θ[0] ⩵ 0.001,

ϕ[0] ⩵ Pi  2 + 0.4454711, {θ, ϕ}, {t, 0, tp};(*Strange point +- inverse*)

s5 = NDSolveEqu1, Equ2, θ'[0] ⩵ 0, ϕ'[0] ⩵ 10, θ[0] ⩵ 0.001, ϕ[0] ⩵ 2 Pi  3,

{θ, ϕ}, {t, 0, tp};

s6 = NDSolve[{Equ1, Equ2, θ'[0] ⩵ 0, ϕ'[0] ⩵ 10, θ[0] ⩵ 0.001,
ϕ[0] ⩵ Pi - 0.0632244444}, {θ, ϕ}, {t, 0, tp}];(*Strange Point 2*)

Mathematica Codes
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(*Fancy Solver Input*)
tp = 100;
k = 6;
Grid@Map[InputField[#, FieldSize → 6, FieldHint → "#"] &,

Dynamic /@ Table[#[i], {i, 1, k}] & /@ {p, tt, pd, td}, {2}]
Dynamic /@ Table[#[i], {i, 1, k}] & /@ {p, tt, pd, td} // TableForm
Eva = Evaluate@{D[L, t], D[L, td], D[L, p], D[L, pd]};
Equ = Eva /. cond;
Equ1 = Equ[[1]] == D[Equ[[2]], t];
Equ2 = Equ[[3]] == D[Equ[[4]], t];

(*Fancy Solver Main*)
{s0, s1, s3, s4, s5, s6} = Flatten[

MapThread[NDSolve[{Equ1, Equ2, θ'[0] ⩵ #4, ϕ'[0] ⩵ #3, θ[0] ⩵ #2, ϕ[0] ⩵ #},
{θ, ϕ}, {t, 0, tp}] &, Table[#[i], {i, 1, k}] & /@ {p, tt, pd, td}], 1];

(*Ploter*)

PlotEvaluate@Flatten@ReplaceAll[#][ϕ[t]] &@{s1, s2, s3, s4, s5, s6},

{t, 0, tp}, PlotRange -> {{0, tp}, Automatic}, AspectRatio → 0.5,
PlotLabel → "纬� latitude", PlotLegends → {1, 2, 3, 4, 5, 6},

ImageSize → Large, PlotStyle → { , , , , , },

PlotEvaluate@Flatten@ReplaceAll[#][ϕ'[t]] &@{s1, s2, s3, s4, s5, s6},

{t, 0, tp}, PlotRange -> {{0, tp}, Automatic}, AspectRatio → 0.5,

PlotLabel → "纬��� vp", PlotLegends → {1, 2, 3, 4, 5, 6}, ImageSize → Large,

PlotEvaluate@Flatten@ReplaceAll[#][ θ''[t] Sin[ϕ[t]]^2] &@

{s1, s2, s3, s4, s5, s6}, {t, 0, tp},

PlotRange -> {{0, tp}, Automatic}, AspectRatio → 0.5, PlotLabel → "纬��� vp",

PlotLegends → {1, 2, 3, 4, 5, 6}, ImageSize → Large,

LogLogPlotEvaluate@Flatten@ReplaceAll[#][θ[t]] &@{s1},

{t, 0, tp}, PlotRange -> {{0, tp}, Automatic},
AspectRatio → 0.5, PlotLabel → "经� longitude",

PlotLegends → {1, 2, 3, 4, 5, 6}, ImageSize → Large, Frame → True,

PlotEvaluate@Flatten@ReplaceAll[#][θ'[t]] &@{s1, s2, s3, s4, s5, s6},

{t, 0, tp}, PlotRange -> {{0, tp}, Automatic}, AspectRatio → 0.5,

PlotLabel → "经��� vt", PlotLegends → {1, 2, 3, 4, 5, 6}, ImageSize → Large,

PlotEvaluate@Flatten@ReplaceAll[#][H /. cond] &@{s1, s2, s3, s4, s5, s6},

{t, 0, tp}, PlotRange -> {{0, tp}, Automatic}, AspectRatio → 0.5,

PlotLabel → "��顿� H", PlotLegends → {1, 2, 3, 4, 5, 6}, ImageSize → Large,

PlotEvaluate@Flatten@ReplaceAll[#][EE /. cond] &@{s1, s2, s3, s4, s5, s6},

{t, 0, tp}, PlotRange -> {{0, tp}, Automatic}, AspectRatio → 0.5,

PlotLabel → "�� E", PlotLegends → {1, 2, 3, 4, 5, 6}, ImageSize → Large,

PlotEvaluate@Flatten@ReplaceAll[#][P /. cond] &@{s1, s2, s3, s4, s5, s6},

{t, 0, tp}, PlotRange -> {{0, tp}, Automatic}, AspectRatio → 0.5, PlotLabel →

"�动� P", PlotLegends → {1, 2, 3, 4, 5, 6}, ImageSize → Large // TableForm
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(*LinearFit*)LinearModelFit

TableFlatten@{Log[t], Log[(θ[t] /. s1)]} /. t → a, a, 1, tp, tp  10000, x, x

ShowListPlotTableFlatten[{Log[t], Log[θ[t] /. s1]}] /. t → a,

a, 1, tp,
tp

10000
, PlotStyle → Red, Plot[%425[x], {x, 0, Log[200]}]

(*OtherStuff*)
CoolColor[ z_ ] := RGBColor[z, 1 - z, 1];
CoolColor /@ Range[0, 1, 1 / 5]

(*Redefinition*)
x = R Cos[θ[t]] + θ[t] R Sin[ϕ[t]] Sin[θ[t]];
y = R Sin[θ[t]] - θ[t] R Sin[ϕ[t]] Cos[θ[t]];
z = -θ[t] R Cos[ϕ[t]];
x1 = R Cos[θ[t]] + θ[t] R Sin[θ[t]];
y1 = R Sin[θ[t]] - θ[t] R Cos[θ[t]];

(*2D Trajectory Plot*)Show

ParametricPlotEvaluate@Flatten{{x, y}, {x1, y1}} /. R → R /. cond /. s1, 1,

{t, 0, tp}, PlotStyle → { , Directive[ , Dashed]},

PlotLegends → {"Trajectory", "Comparision"},

Graphics[{ , Disk[{0, 0}, R /. cond]}]

(*3D Trajectory Plot*)

RasterizeParametricPlot3D{x, y, z} /. R → R /. cond /. s1, {t, 0, tp},

ColorFunction → CoolColor /. Line[pts_, rest___] :> Tube[pts, 0.05, rest],

ImageSize → 1000, RasterSize → 2000

(*Movable Trajectory Plot*)Manipulate

ParametricPlotEvaluate@Flatten{{x, y}, {x1, y1}} /. R → R /. cond /. s1, 1,

{t, tx - 10, tx}, PlotStyle → { , },

PlotRange → {{-300, 300}, {-300, 300}}, {tx, 10, tp}

(*Importing Experiment Files*)
data = Import[FileNameJoin[{DownLoads, "IMG_3533", #}]] & /@

Import[FileNameJoin[{DownLoads, "IMG_3533"}]][[2 ;; ;; 10]];

(*Binarizing & Image Processing*)
datab = Binarize[#, 0.6] & /@ data;
ImageAdd @@ datab

(*Processing*)DynamicModule[{pt = {0, 0}}, {LocatorPane[
Dynamic[pt], # , Appearance → Style["o", Red]], Dynamic[pt]}] & /@ data

StringTake[ToString@#, {20, 32}] &
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(*Plotting*)

ListLinePlotSubtract[#, data[[1]]] & /@ data, AspectRatio → 1,

PlotRange → {{-500, 360}, {-600, 260}}, ColorFunction →

Function{x, y}, ColorData["ValentineTones"]1 - Sqrt[y^2 + x^2]  650,

PlotStyle → Thickness[0.01], Frame → True, ColorFunctionScaling → False

Rasterize[#, ImageSize → 1000, RasterSize → 2000] & /@

ListLinePlot[p, Mesh → Full, MeshStyle → Directive[PointSize[Medium],

ColorData["AvocadoColors"][0.25]], AxesLabel → {"t", "θ"},

PlotStyle → ColorData["AvocadoColors"][0.7]], ListLinePlot

ArcTan#[[2]]  #[[1]] & /@ Subtract[#, data[[1]]] & /@ Drop[data, 1],

Mesh → Full, PlotStyle → ColorData["AvocadoColors"][0.8],

MeshStyle → Directive[ColorData["AvocadoColors"][0.4]], AspectRatio → 1  9

(*MATLAB data Processing*)GraphicsRow[
Table[ListPlot[data5B[[1 ;; d]], PlotRange → {{0, Max[First@Transpose@data5B]},

{0, Max[Last@Transpose@data5B]}}, Frame → True, FrameTicks → None],
{d, 0, Quotient[Count[data5B, _], 300] 300, 300}], -9]

(*Importing*)
Clear[data, data0, k];

Tabledata[i] = First@Import@FindFile["Trial" <> ToString[i] <> "B.mat"]~

Dot~{{1, 0}, {0, -1}}, {i, 1, 5};

Tabledata0[i] = Subtract#, data[i][[60]] + data[i][[90]]  2 & /@

Drop[data[i], 60], {i, 1, 5};

k = {{10, -20}, {10, -50}, {20, -60}, {10, 10}, {1, -20}};
Table[data0[i] = Subtract[#, k[[i]]] & /@ data0[i], {i, 1, 5}];
data0[2] = Drop[data0[2], 170];
{Table[ListPlot[data0[i]], {i, 1, 5}]} // TableForm
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(*Processing θ*)

Clear[t];

TableModule{a, s, i, j}, QuietForp = {};

i = 0;
a = 0;
j = 1, j <= Count[#, _], j++,

s = Module

h := i Pi + ArcTan#[[2]]  #[[1]] /. {Indeterminate → a - i Pi},

If[h < a, i++, Indeterminate];
If[h - a < 3, h, i = i - 1; a]

 &@#[[j]]; a = s; p = Append[p, a] &@data0[i];

t[i] = p, {i, 1, 5};

Clear[r, rs];

Tabler[i] = Sqrt#[[2]]^2 + #[[1]]^2 & /@ data0[i], {i, 1, 5};

Table[Module[{a, b, c, h}, For[i = 1;
a = #[[1]];
s = {}, i <= Count[#, _], i++, b = #[[i]];
h = If[Abs[b - a] > 80, a, b];
s = Append[s, h];
a = h]] &@r[k];

rs[k] = s, {k, 1, 5}];

(*Processing α*)QuietTable

t[i] = ArcTan#[[2]]  #[[1]] & /@ data0[i] /. Indeterminate → 0, {i, 1, 5};

Table[Module[{a, b, c, h}, For[i = 1;
a = #[[1]];
s = {}, i <= Count[#, _], i++, b = #[[i]];
h = If[Abs[b - a] > 0.3, a, b];
s = Append[s, h];
a = h]] &@t[k];

ts[k] = s, {k, 1, 5}];
Clear[r, rs];

Tabler[i] = Sqrt#[[2]]^2 + #[[1]]^2 & /@ data0[i], {i, 1, 5};

Table[Module[{a, b, c, h}, For[i = 1;
a = #[[1]];
s = {}, i <= Count[#, _], i++, b = #[[i]];
h = If[Abs[b - a] > 20, a, b];
s = Append[s, h];
a = h]] &@r[k];

rs[k] = s, {k, 1, 5}];
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(*Plotting*)

Transpose@TableListLinePlot[t[i], Mesh → All, MeshStyle →

Directive[PointSize[Small], Darker@Darker@Brown], Filling → Axis,
ColorFunction → "WatermelonColors", Frame → True, FrameLabel → {"t", θ}],

ListLinePlotrs[i]  20, Mesh → All, MeshStyle →

Directive[PointSize[Small], Darker@Darker@Brown],
Filling → Axis, ColorFunction → "WatermelonColors", Frame → True,

FrameLabel → {"t", l Sin[ϕ]}, {i, 1, 5} // TableForm

ListLinePlotTableAbs@ArcSinQuietrs[i]  t[i]  20 /. Indeterminate → 0,

{i, 1, 5}, PlotLegends → {"1", "2", "3", "4", "5"}, Mesh → None,

PlotStyle → { , , , , }, Frame → True, FrameLabel → {t, ϕ}

ListLinePlot[Table[ts[i], {i, 1, 5}], PlotStyle → { , , , , },

Frame → True, FrameLabel → {t, α}, PlotLegends → {"1", "2", "3", "4", "5"}]

Z = Plus @@ TableAbs@ArcSin@Takers[i]  t[i]  20, 1800, {i, 1, 5}  5;

ListPlot[{Z, Z + F, Z - F}, PlotLegends → {"1", "2", "3", "4", "5"},

Mesh → None, PlotStyle → { , , }, Frame → True, FrameLabel → {t, ϕ}]

(*Error Analysis*)
Bar = Plus @@ Table[Take[data0[j], 1800], {j, 1, 5}];
ab =

TransposeSqrtPlus @@ TableTake[data0[i], 1800] - Bar  5^2, {i, 1, 5}  5;

T = Plus @@ Table[Take[t[j], 1800], {j, 1, 5}]  5;

abBar = Flatten[{ab, Transpose@Bar, {T}}, 1];
F =

MapThreadAbsSimplify@Sqrta DArcSinx^2 + y^2  ArcTan[(y / x)]  20, x^2 +

b DArcSinx^2 + y^2  ArcTan[(y / x)]  20, y^2 /.

ArcTan
y

x
 → #5, a → #1, b → #2, x → #3, y → #4, Abs' → Abs &, abBar;
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(*Graphix Plotting*)CoolColor /@ Range0, 1, 1  10 Show

Graphics3D[{FaceForm[ ], Cylinder[{{0, 0, -0.3}, {0, 0, 2.5}}]}, Boxed → False],

ParametricPlot3DSin[u], Cos[u], u  300, {u, 0, 500}, PlotStyle → ,

PlotRange → All, Boxed → False /. Line[pts_, rest___] :> Tube[pts, 0.01, rest],

ParametricPlot3D[{1, u, -u}, {u, 0, 2}, PlotStyle → , PlotRange → All,

Boxed → False] /. Line[pts_, rest___] :> Tube[pts, 0.01, rest],

Graphics3D

FaceForm[ ],

Ball[{1, 2, -2}, 0.3],

FaceForm[ ], Arrow[Tube[{{1, 2, -2}, {1, 2, -4}}]],

FaceForm[ ], Arrow[Tube[{{1, 2, -2}, {1, 1, -1}}]],

Arrowheads[{-.03, .03}],

FaceForm[ ], Arrow[Tube[{{0, 0, -0.3}, {0, 1, -0.3}}]],

Text[Style["R", Bold, 30, ], {0, 0.5, -0.8}],

Text[Style["m", Bold, 30, ], {1, 2, -2}],

Text[Style[OverVector["T"], Bold, 30, ], {1, 1.5, -1}],

Text[Style["m" OverVector["g"], Bold, 30, ], {1, 2, -4.3}],

TextStyle["l", Bold, 30, ], 1, 2  5 * 2, -2  5 * 2

, Boxed → False

Show

Graphics3D[{FaceForm[ ], Cylinder[{{0, 0, -0.3}, {0, 0, 2.5}}]}, Boxed → False],

ParametricPlot3DSin[u], Cos[u], u  300, {u, 0, 500}, PlotStyle → ,

PlotRange → All, Boxed → False /. Line[pts_, rest___] :> Tube[pts, 0.01, rest],

ParametricPlot3D[{1, u, -u}, {u, 0, 2}, PlotStyle → , PlotRange → All,

Boxed → False] /. Line[pts_, rest___] :> Tube[pts, 0.01, rest],
Graphics3D[{

FaceForm[ ],

Ball[{1, 2, -2}, 0.3],

FaceForm[ ], Arrow[Tube[{{1, 0, 0}, {1, 0, -2}}]],

FaceForm[ ], Arrow[Tube[{{0, 0, -0.3}, {-1.2, -0.8, -0.3}}]],

FaceForm[ ], Tube[{{0, 0, -0.3}, {1, 0, -0.3}}],

Text[Style["θ", Bold, 30, ], {0, 0.2, -0.4}],

Text[Style["ϕ", Bold, 30, ], {1, 0.5, -0.8}]

}, Boxed → False],

ParametricPlot3D[{0.5 Sin[u], 0.5 Cos[u], -0.3}, {u, -2.15, 1.55},

PlotStyle → , PlotRange → All, Boxed → False] /. Line[pts_, rest___] ⧴

{Arrowheads → Small, Arrow[#]} &@Tube[pts, 0.01, rest],

ParametricPlot3D{1, 0.5 Cos[u], 0.5 Sin[u]}, u, -Pi  2, -Pi  4,

PlotStyle → , PlotRange → All, Boxed → False /. Line[pts_, rest___] ⧴

{Arrowheads → Small, Arrow[#]} &@Tube[pts, 0.01, rest]
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ShowGraphics3D[{FaceForm[ ], Cylinder[{{0, 0, -0.3}, {0, 0, 2.5}}],

FaceForm[ ], Cylinder[{{0, 0, -4}, {0, 0, 7}}, 0.3]}, Boxed → False],

ParametricPlot3DSin[u], Cos[u], u  300, {u, 0, 500}, PlotStyle → ,

PlotRange → All, Boxed → False /. Line[pts_, rest___] :> Tube[pts, 0.01, rest],

ParametricPlot3D[{1, u, -u}, {u, 0, 2}, PlotStyle → , PlotRange → All,

Boxed → False] /. Line[pts_, rest___] :> Tube[pts, 0.01, rest],
Graphics3D[{

FaceForm[ ],

Ball[{1, 2, -2}, 0.3],

}, Boxed → False]

Show

Graphics3D[{FaceForm[ ], Cylinder[{{0, 0, -1}, {0, 0, 2.5}}], Boxed → False}],

ParametricPlot3DSin[u], Cos[u], u  300, {u, 0, 500}, PlotStyle → ,

PlotRange → All, Boxed → False /. Line[pts_, rest___] :> Tube[pts, 0.01, rest],

ParametricPlot3D[{
{Sqrt[3], u, -u},
{-Sqrt[3], -u, -u},
{u, -Sqrt[3], -u},
{-u, Sqrt[3], -u}

}, {u, 0, 2}, PlotStyle → , PlotRange → All, Boxed → False] /.

Line[pts_, rest___] :> Tube[pts, 0.01, rest],
ParametricPlot3D[{

{0, u, 0},
{0, -u, 0},
{u, 0, 0},
{-u, 0, 0}

}, {u, 0, Sqrt[3]}, PlotStyle → , PlotRange → All, Boxed → False] /.

Line[pts_, rest___] :> Tube[pts, 0.01, rest],

Graphics3D

FaceForm[ ],

Ball[{Sqrt[3], 2, -2}, 0.3],
Ball[{-Sqrt[3], -2, -2}, 0.3],
Ball[{2, -Sqrt[3], -2}, 0.3],
Ball[{-2, Sqrt[3], -2}, 0.3],

FaceForm[ ], Arrow[Tube[{{0, 0, -1}, {-1.5, -0.8, -1}}]],

FaceForm[ ], Arrow[Tube[{{0, 0, -1}, {0.8, 0.6, -1}}]],

TextStyle["R", Bold, 30, ], {0.8, 0.6, -1}  3,

TextStyle["r", Bold, 30, ], {-1.5, -0.8, -1}  2

, Boxed → False,

RegionPlot3D[2 < x^2 + y^2 < 3, {x, -2, 2}, {y, -2, 2}, {z, -1 + 0.4, 0},
PlotStyle → Red, Mesh → None, BoundaryStyle → None, Boxed → False],

Boxed → False, BoundaryStyle → None
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ShowGraphics[{ , Disk[{0, 0}, {2, 3}]}],

ParametricPlot{2 Sin[u], 3 Cos[u]},

u, 3 Pi  2, 3 Pi, PlotStyle → Directive[Thickness[0.07], ],

ParametricPlot{2 Sin[u], 3 Cos[u]}, u, 3 Pi  2, 3 Pi  2 + 0.3,

PlotStyle → Directive[Thickness[0.07], ], ParametricPlot[

{-2, -u}, {u, 0, Pi}, PlotStyle → Directive[Thickness[0.07], ]],

ParametricPlot[{-2, -u}, {u, 0, Pi - 2.7},

PlotStyle → Directive[Thickness[0.07], ]],

ParametricPlot3^2  2 * Sin[u] + 3^2  2 - 2, 3^2  2 Cos[u],

{u, 0, 2 Pi}, PlotStyle → Directive[Thickness[0.02], ],

Graphics , Arrowheads[{-.1, .1}], Arrow{-2, 0}, 3^2  2 - 2, 0,

TextStyle"ρ=
b2

a
", Bold, 30, , {0, 1}

 ShowGraphics3D[{FaceForm[ ], Cylinder[{{0, 0, -1.3}, {0, 0, 2.5}}],

FaceForm[ ], Arrow[Tube[{{1, -0.35, 0.4}, {1, -0.35, -0.2}}]],

FaceForm[ ], Arrow[Tube[{{1, -0.35, 0.4}, {1, -0.35, 1.4}}]],

FaceForm[ ], Arrow[Tube[{{1, -0.35, 0.4}, {2, -0.7, 0.4}}]],

Text[Style["m" OverVector["g"], Bold, 30, ], {1, -0.35, -0.2}],

Text[Style[OverVector["f"], Bold, 30, ], {1, -0.35, 1.4}],

Text[Style[OverVector["N"], Bold, 30, ], {2, -0.7, 0.4}],

Text[Style[OverVector["T"], Bold, 30, ], {1.1, 1.2 u, -u + 0.23} /. u → 1.5],

Text[Style[OverVector["T"], Bold, 30, ], {0.3, 1.2 u, -u + 0.23} /. u → -1.9],

FaceForm[ ], Arrow[Tube[Evaluate[

{{1.1, 1.2 u, -u + 0.23} /. u → -0.15, {1.1, 1.2 u, -u + 0.23} /. u → 1.5}]]],
Arrow[Tube[Evaluate[{{0.99, 1.2 u, -u + 0.23} /. u → -0.4,

{0.3, 1.2 u, -u + 0.23} /. u → -1.9}]]]}, Boxed → False],

ParametricPlot3DSin[u], Cos[u], Sinu - Pi  1.3 + 1, {u, 2, 2 Pi},

PlotStyle → , PlotRange → All, Boxed → False /.

Line[pts_, rest___] :> Tube[pts, 0.1, rest],

ParametricPlot3DSin[u], Cos[u], Sinu - Pi  1.3 + 1,

{u, 1.7, 2}, PlotStyle → , PlotRange → All, Boxed → False /.

Line[pts_, rest___] :> Tube[pts, 0.1, rest],
ParametricPlot3D[{1, 1.2 u, -u + 0.23}, {u, -0.1, 3},

PlotStyle → , PlotRange → All, Boxed → False] /.

Line[pts_, rest___] :> Tube[pts, 0.1, rest], BoundaryStyle → None
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Importing image
Number='3'
Letter='A'
place=join(['/Trial',Number,'/Trial',Number,Letter]);
[n,m]=size(dir(join(['/Users/VanLadmon/Downloads',place])));
for i=1:n-3
    l=5-length(num2str(i));
    z=zeros(1,l);
    t='_';
    for k=1:l
        t=join([t,num2str(z(k))]);
    end
    I{i}=imread(join(['/Users/VanLadmon/Downloads',place,'/
Trial',Number,Letter,t,num2str(i),'.jpg']));
end

Number =

    '3'

Letter =

    'A'

Convert RGB to Grayscale
for i=1:n-3
J{i}=rgb2gray(I{i});
end

Finding max value
for i=1:n-3
[v,ind]=max(J{i});
[v1,ind1]=max(max((J{i})));
X{i}=[ind(ind1),ind1];
 if v1<50

1

Matlab Code



 X{i}=[0,0];
 end
end

Converting
R=[];
for i=1:n-3
    for k=1:2
    R(i,k)=X{i}(k);
    end
end

Saving
save('Trial3A.mat','R')

Published with MATLAB® R2017b
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Team Members 

1. Zhaoyi Li 

Grade 12, Harbin Normal University High School. 

2. Sifei Zhang 

Grade 12, Dalian Yuming High School. 

Instructors 

1. Shiqiang Deng 

Graduated from Tsinghua University. At present, he is a physics teacher 

of Harbin Normal University High School and he is the instructor of 

Chinese Physics Olympiad (CPhO). 

2. Yongyuan Jiang 

He is the professor of Department of Physics, Harbin Institute of 

Technology. 
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