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Abstract 
 

Khoomei is a Mongolian style of throat singing, originated in the inner Mongolia, 
Mongolia, Tuva, and Siberia. It is a crucial competent to the life and culture of the certain central 
Asian populations. One of the major features of Khoomei is that listeners can detect a high pitch 
sound and a low pitch simultaneously. The first goal of this article is to verify the weak middle 
frequency observation through physical means. Once observation is confirmed, we can proceed 
to find out a reason for phenomena through building models and testing on them. One of our 
hypothesis is that the position of the tongue is responsible for the weak middle frequency 
because it would shape the oral cavity and alter the resonance structure. To verify, we build 2-
Dimensional and 3-Dimensional models of oral and nasal cavities with different positions of the 
tongue and apply wave equations to solve for the frequencies and their relative amplitudes at a 
certain point on the models. Using the above procedures, we were able to conclude that the 
position of the tongue is an important reason for the weak middle frequency observation.  
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1. Introduction 

 
1.1 Background 
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1.1.1 History 

Khoomei is a Mongolian style of throat singing, originated in the inner Mongolia, 
Mongolia, Tuva, and Siberia. Mongolian nomads practice Khoomei at various occasions, 
such as tribal ceremonies and important household events. The history of Khoomei can be 
dated back to the ancestry of Mongolic people and their pastoral animism. Khoomei may had 
been developed from sound mimicry of nature’s objects, which was seen as a way to connect 
with spiritual world. Khoomei is inherited orally from the bearer to the learner. Traditionally, 
Khoomei singers are mostly men. Besides from some biological disadvantages, women were 
discouraged by beliefs that singing Khoomei would give them difficulties during childbirths. 
The situation started to change around 1970s, when several female Khoomei singers started 
to perform publicly.  

 
1.1.2 Styles 

There had been many attempts trying to divide Khoomei into categories. A universally 
accepted classification is not available due to the various styles and groups that practice 
Khoomei. Here we introduce some of the most common and widely accepted classification of 
Khoomei.  

In terms of acoustic effect, Khoomei can be generally grouped into two major categories: 
kharkhiraa and isgeree. In kharkhiraa, the vocalist sings the drone in normal voice while 
emphasizing the undertone that is one octave below. Kharkhiraa is further divided into two 
styles: Dag and Xovu. The Dag style features a deeper voice compared to Xovu. In isgeree, 
the vocalist emphasizes the overtone that is above the drone, adding a whistle-like sound.  



In some areas, Khoomei is identified by the part of body that is responsible the most 
for the production of certain sound. Some of the most identified body parts include nasal 
cavity, pharynx, chest, palate, lips and tongue.  

 
1.1.3 Artistic Values and Current Situations 

The major characteristic of Khoomei is that one vocalist sounds more than one pitch 
simultaneously. Singing Khoomei involves the movements of multiple organs and structures: 
larynx, pharynx, oral cavity, nasal cavity, lips, etc. The differences in styles also arise from 
the distinct usage of these organs and structures. The word “Khoomei” literally means 
“pharynx” in Mongolian.  

The Mongolian traditional art of Khoomei was inscribed in 2010 on the Representative 
List of the Intangible Cultural Heritage of Humanity of UNESCO. However, the art of 
Khoomei has been endangered due to its gradually decreasing popularity and inheritance. 
One of the major motivations of this research is to better understand the art of Khoomei and 
to provide some basic guidance to learners.  
 

 
1.2 Music Theory and Physics 

In this research, instead of focusing on Khoomei’s artistic values, I want to explore this 
vocal phenomenon in a physical approach. First, I will briefly summarize the how sound is 
described in physics. 

 
1.2.1 Sound  

Sound is the result of vibration at certain frequency in transmission media, such as gas, 
liquid and solid. Sound travels in longitudinal wave in air, which means the direction of 
displacement of air particles is the same as the direction of propagation of the wave. Sound 
wave is characterized by its wavelength, frequency and amplitude. The wavelength of a 
longitudinal wave is the distance of one compression and one rarefaction. The amplitude of 
the sound wave is the pressure between the undisturbed air and the maximum pressure 
caused by the wave. The frequency is the number of units of wavelength passing through 
during one second.  

The relationship between wavelength(𝛌), frequency(f), and speed(v) is described in the 
formula: v = 𝛌f.  

 
1.2.2 Amplitude and Loudness 

Greater amplitude produces louder sound, and smaller amplitude produces quieter sound. 
The loudness of sound is measured by decibel. Human ear can hear sound with decibel 
ranging from 0 dB to 194 dB. The normal speech voice has a loudness of about 60 to 70 dB.  

 
1.2.3 Pitch and Frequency 



Higher frequency produces high pitch sound, while lower frequency produces low pitch 
sound. Human ears are capable of detecting sound waves ranging from 20 Hz to 20,000 Hz, 
which can be broken down into seven frequency bands.  

 
Frequency Range Frequency Band (kHz) 
Sub-Bass 0.02 – 0.06 
Bass 0.06 – 0.25 
Low Mid-range 0.25 – 0.50 
Mid-range 0.50 – 2.00 
Upper Mid-range 2.00 – 4.00 
Presence 4.00 – 6.00 
Brilliance 6.00 – 20.00 

1.2.4 Music Theory 
 

Concepts like frequency, wavelength, period indeed are closely related to concepts in  music, 
for example, frequency is a measure of pitch. In western music theory, 12 notes with fixed 
frequencies are used. The central note is A4 which has a frequency of 440 Hz. The frequency of 
every other note follows the formula:  

	𝑓 = 2
&
'(	×	440	𝐻𝑧 

For example, the note C5 is 3 notes above the A4, so n is 3. From the formula, the frequency 
of C5 is 523 Hz and the frequency of C4 is, half of C5, 261 Hz.  

An octave is the interval between two pitch whose frequencies are twice apart. For example, 
if a note has a frequency of 440 Hz, the same note one octave above has a frequency of 880 Hz 
and the same note one octave below has a frequency of 220 Hz.  

Sound normally vibrate at more than one frequency. In other words, the sound signal we 
perceive in daily life is actually a superposition of components of various frequencies. The 
lowest resonant frequency is the fundamental frequency. An integer multiple of the fundamental 
frequency is the harmonic of the fundamental frequency. Other frequencies that are not integer 
multiples of the fundamental frequencies are call overtones.  
 

 
1.3 Special Interests and Research Status 

 
1.3.1 Observations 

When listening to Khoomei singing, we often can detect a high pitch voice and a 
low pitch voice simultaneously. The difference between the two pitches is so 
distinguishable that it is reasonable to hypothesize that there is a weak middle frequency 
between the pitches in Khoomei singing.  

While looking through some Khoomei learning materials, we noticed that the 
position of the tongue was especially emphasized, which is unusual for most singing 



styles. Therefore, it is possible that the position of the tongue plays an important role in 
the weak middle frequency phenomenon.  
 

1.3.2 Research Status Review 
Most articles on the mechanics of Khoomei had been done from the perspective 

of either singing techniques or physiology.  
In regard of singing techniques in general, most articles mainly address two important 

basic skills for all styles of Khoomei: breathing and the position of lips and tongue. 
Siqinbilige introduced the oral cavity as a “container” that is responsible for increasing 
the amplitude of the fundamental frequency sound.  The tongue’s change of positions 
below the palate produce harmonic resonance. [1] 

From a more physiological point of view, emphasis has been put on the position of 
the tongue as well. Theodore Levin and Michael Edgerton, in the article The Throat 
Singers of Tuva, conducted video fluoroscopy and nasoendoscopy on Khoomei singers 
who performed four different styles of Khoomei. In all the images, they had detected 
usual movements of the tongue, which they explained with shifting the frequency of a 
formant and aligning it with a harmonic. [2] 

Many researches involve some physics but the extent vary. A few researches had 
been done using a strictly physical approach.  
 
 

2. Methodology 
 

2.1 Weak Middle Frequency 
 

Firstly, the most fascinating part of Khoomei is the audience experience that two 
sounds come from one vocal performer. As I have proposed earlier, there is a weak 
middle frequency between the pitches in Khoomei singing. Therefore I employ frequency 
spectrum analysis to verify the observation. Auralization is defined to be a technique of 
creating audible sound files from numerical data. And the Arualization covers all 
cognitive aspects of sounds. [3] We took several audio clips that are about 5 seconds long 
and import them into python, which would then do the Fourier Transform on the audio 
information. When the audio signals are decomposed into different frequency regions, we 
plot the graph with x-axis indicating frequency in kHz and the y-axis indicating relative 
amplitude.  

Fourier Transform decompose a time-dependent periodic function into a series of 
sine and cosine functions. Fast Fourier Transform(FFT) is an algorithm that accelerates 
this process. To plot the graph, FFT measures the amplitude of each individual sine and 
cosine function and plot their frequency relative to their amplitudes.  

 



2.2 Pressure Field 
Then comes the question, what accounts for such a spectrum? Sound wave 

fundamentally is the change of pressure field in spacetime. To solve the pressure field, 
we use the fact that pressure waves propagate according to the wave equation.  

We employ the wave equation. along with boundary conditions determined by 
materials and shapes. Since it is not very likely to solve these equations by hand, we use 
Matlab to solve the partial differential equations.  

Our hypothesis is that the position of the tongue plays an important role in 
Khoomei singing. To test this hypothesis by simulation, we made 2-Dimensial and 3-
Dimensional models of the oral cavity. We will test the wave propagation in the models 
based on the wave equation.  

 
 

3. Weak Middle Frequency 
 

The following audio clips were imported into Python and analyzed by Fourier 
Transform (See Appendix ® Python for Fourier Transform). Their graphs after 
processing are listed below: Khoomei Singing, “A” note, piano music and normal speech. 
The horizontal axis represents the frequencies in kHz and the vertical axis represents the 
relative amplitudes of these frequencies, with the greatest amplitude being scaled to 1.0.  

  

 
Figure 1        Figure 2 

 



 
Figure 3       Figure 4 

In figure 2, a standard “A” note has a singular frequency of 440Hz (0.44 kHz), 
which was shown in the graph. Other frequencies with very small amplitude are sources 
of errors that are negligible. In figure 3, a human voice produces frequencies between 
around 1 to 1 kHz. In figure 4, a piece of piano music has many frequencies ranging from 
around 0.1 to 1 kHz, which corresponds to a range between C3 to C6 on the piano 
keyboard. All three graphs show certain cohesion and consistency with the distribution of 
high-amplitude frequencies. In comparison, Figure 1 has a considerable gap between two 
high-amplitude frequencies respectively at around 0.6 and 3.1 kHz.  

The graphs confirmed the observation that Khoomei singing has a relatively weak 
middle frequency compared to other music forms.  

 
 

4. Experiment with 2-Dimensional Graph  
It is to be made clear at the beginning that the subject of interest of this research is the 

resonance in oral and nasal cavities. We do not concern ourselves with any other parts of the 
sound production and reception process.  

Now we attempt to use 2-Dimensional side view graphs to explain the weak middle 
frequency observation.  
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For our particular purposes, we graph two situations in MATLAB pdeModeler (See Appendix ® 
MATLAB ® 2D Graph 1): the first one is when the tongue is at its normal position and the 
second situation is when the tongue touches the upper palate. (For the sake of simplicity, we did 
not take account of nasal cavity in the 2D phase.) 
 

 
 
Sound propagation in pressure field follows the following equation: 

∇(𝑝 =
𝜕(𝑝
𝜕𝑥( +

𝜕(𝑝
𝜕𝑦( +

𝜕(𝑝
𝜕𝑧( =

1
𝑣(
𝜕(𝑝
𝜕𝑡(  

where v is the speed of the propagation inside a certain material.  
It also follows that:  

𝑝 𝑥, 𝑦, 𝑧, 𝑡 = 𝐴(𝑥, 𝑦, 𝑧)cos	(𝜔𝑡 + 𝜙) 
(See Mathematical Methods for Physics, H.W. Wyld, page 292) [3] 
And then calculate the time derivative of the time part: 
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Since the term cos 𝜔𝑡 + 𝜙  carries no spatial dependence, the partial derivative is equivalent to 
the total derivative over time: 
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Therefore the separation of variables gives: 

∇(𝑝 = −
𝜔(

𝑣( 𝑝 

 

∇( 𝐴 cos 𝜔𝑡 + 𝜙 = −
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By definition of wave quantities,	𝜔 = (D

E
 and 𝜆 = 𝑇𝑣, where 𝜆 is the wavelength of the sound 

wave and 𝑇 the period, we have : 
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Divide both side by the time term cos 𝜔𝑡 + 𝜙 : 

∇(𝐴 = −
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This is the equation that tells the amplitude of the pressure field at any point in the region of 
interest. 
 
Thus, the values of coefficients in PDE Specification in MATLAB follows that: 

𝑐 = −1
𝑎 = 4𝜋(
𝑓 = 0
𝑚 = 0
𝑑 = 0

/𝜆( 

with the relationship 𝑚MNO
MPN

+ 𝑑 MO
MP
− ∇ ∙ 𝑐∇𝑢 + 𝑎𝑢 = 𝑓 

 
Human ears are capable of detecting sounds of wavelength ranging from 0.017m to 17m. 
According to the equation above, the value of 𝑎 ranges from 136603.52 Hz to 0.1366Hz.  
 
To apply boundary conditions, we consider three cases: glottis, the opening of the mouth, and the 
surface that encloses the cavity space. For the glottis and the opening of the mouth, the boundary 
conditions should be set to Dirichlet values for they are relatively fixed. The boundary condition 
at the opening of the mouth is actually not given a value because it is the value that we observe. 
The boundary condition of glottis is given a fixed value that is random for all amplitude are 
relative in our cases.  

Glottis: ℎ = 1
𝑟 = 100satisfies that ℎ ∗ 𝑢 = 𝑟 

Here we consider glottis as a source of sound waves, and r is a reference amplitude. It is not 
necessary to consider the oscillation process that took place since we only take account that 
produced sound wave.  
At the opening of the mouth: ℎ = 0, 𝑟 = 0 which means 𝑢 is not set to any value. Even though in 
real life, there is a distance the sound wave has to travel from the speaker’s mouth to the 
listener’s ear, traveling in air doesn’t for a short distance does not alter the composition of sound 
waves. Thus, it also makes sense to acquire data at the opening of the mouth.  
The surface that encloses the cavity space is different in that there is no motion normal to the 
surface. Suppose 𝑝 represents the pressure inside the cavities and 𝜌 represents air density. If we 

take partial derivatives normal to the wall, we get  MW
M&
= MX

M&
= 0.  

Since equation follows Newton’s Second Law, we get  

𝜌Y
𝜕𝑣
𝜕𝑡 = −∇	𝑝 

𝜌Y
𝜕𝑣
𝜕𝑡 + ∇	𝑝 = 0 

To separate the time dependence,  

𝜌 𝑟, 𝑡 = 𝑢&(𝑟)
&

&Z'

[𝐴&𝑠𝑖𝑛𝑘&𝑐𝑡 + 𝐵&𝑐𝑜𝑠𝑘&𝑐𝑡] 



∇(𝑢& 𝑟 + 𝑘&
(𝑢& 𝑟 = 0 

𝑛 ∙ ∇𝑢& 𝑟 = 0 

On the surfaces of the cavities, 
𝑔 = 0
𝑞 = 0 satisfies that 𝑛 ∙ ∇𝑢 + 𝑞𝑢 = 𝑔 

 
The following graphs demonstrate the pressure field in Graph1 and Graph 2 at 𝑎 = 8000	𝑜𝑟	𝜆 =
0.07𝑚 

 
 
 
To view the difference among all the frequencies at a single point near the opening of the mouth, 
we made the following graphs whose x-axis represents a scaled wavelength and y-axis represents 
amplitude at that frequency. The scale of the x-axis is 1:5cm. (See Appendix ® MATLAB ® 
2D Graph 1 PDE Solution) 
 

 
 



 
 
 
 

5. Experiment with 3-Dimensional Graphs 
 

There is not any existing 3-Dimensional template for oral and nasal cavities. To achieve 
such a graph, we construct the shape in the app Blender based on a few 2-D graphs. There are 
certain difficulties in constructing a 3-D model since most of our information lacks a dimension. 
To verify the accuracy of the model, an otolaryngologist had been consulted.  
 We have two versions of models. The first one is strictly based on our real oral and nasal 
cavity structures. However, the high accuracy of the detailed model seems to make it very 
difficult for the equation solving process. Thus, a second simplified model was made to achieve 
the same purpose. The two models are displayed below.  
 



 
3-Dimensional Oral and Nasal Cavities (Original Version) Software: Blender 

 

 
3-Dimensional Oral and Nasal Cavities (Simplified Version) Software: Blender  

We use the open source 3D creation software Blender to complete the above model. Since wave 
equations are appropriate for modeling, we are able to use a tool for developing acoustic scenes 
such as Blender. [5] The model is exported as a stl. file and imported into MATLAB, where we 



repeat the process explained in the previous section. (See Appendix ® MATLAB ® 3D Graph 3 
PDE Solution) To view the difference among all frequencies at a single point near the opening of 
the mouth, we made the following graphs whose x-axis represents a scaled wavelength and y-
axis represents amplitude at that frequency. The scale of the x-axis is 1:10cm.  

 
 

 
 
 
 
 



 
6. Results and Conclusion 

 
6.1 Analysis of Results 

In the 2-Dimensional Graph 1, we can see that there is only one single apparent high-
amplitude frequency at around 2 kHz. In the 2-Dimensional Graph 2, we can see that there are 
two relatively apparent amplitude: a relative amplitude of 1 at around 2 kHz and a relative 
amplitude of 0.2 at around 0.8 kHz. In the 3-Dimensional Graph 3, we can observe high 
amplitude frequencies at around 1.7 KHz with a relative amplitude of 0.16 and a at 3 kHz with a 
relative amplitude of 1. In the 3-Dimensional Graph 4, there are both visible high amplitude 
frequencies at around 1.7 KHz with a relative amplitude of 0.35 and at 3 kHz with a relative 
amplitude of 1.  

Both sets of graphs, to certain extent, demonstrated that the observation that there exists a 
weak middle frequency in Khoomei Singing. However, comparatively speaking, the 3-D model 
better confirms this observation.  

Through the simulations, we are able to confirm that the uniqueness of Khoomei lies in 
the different positions of the tongue. The tongue changes the resonance cavity of the sound wave, 
thus effecting the frequencies.  
 

6.2 Conclusion 
This research has let us come to several important conclusions. The tools that have 

helped us to achieve the confirmation of our hypothesis could also be used in many other 
occasions, either for future researches or for educational purposes. First, we came to see the 
importance of frequency spectrums, which is the scientific way to collect audio information. For 
ancient and less known singing styles such as Khoomei, the appliance of science and modern 
technology to analyze and to record seem highly beneficial. The application side does not restrict 
itself to music forms; frequency spectrum applies to all audio information such as languages and 
musical instruments.  

One of our initial motivation was to build a model that can help Khoomei learners to 
better understand the singing mechanics. Our attempt at first to find existing oral and nasal cavity 
templates for simulation failed as we realized that no one has done such a model before. The 
originality of the model provides a new approach to the existing literatures and other researches, 
which may come across similar problems in the future. The same process of frequency spectrum, 
model building, and simulation to analyze and record has broad applications, such as preserving 
endangered languages, fostering the learning of foreign languages, and understanding the body 
structures and living habits of animals that make special sounds.  

Most importantly, we have confirmed our observation and hypothesis from the very 
beginning. Though there had been other attempts to do so, none of them includes a strictly 
physical approach. Our take on the subject adopts the physical approach, which also contributes 
to the existing research.  



 
6.3 Discussion for Improvements 

There are several places that can be improved in our experiment. The first possible 
improvement concerns the accuracy of the model. As we discussed earlier, the accuracy of the 3-
Dimensional model is compromised by our limited means of solving partial differential 
equations. We would receive better results if there are means to solve the equations while 
retaining the accuracy of the model.  
 Another flaw with our current simulation is that we did not take into account the 
characteristics of different biological materials of the surfaces. For the sake of simplicity, we 
treat all surfaces as if they would only experience pure reflection, ignoring the fact that 
depending on the material, surfaces can selectively absorb, reflect or deflect.  
 Last but not least, the fact that we treated the source of sound waves as a boundary 
condition also deserves some thought for improvements in the future. Our choice was limited by 
the knowledge on the mechanics of glottis, vocal folds and other complicated speech organs. If 
we can get hold of more accurate input for the wave propagation equation, the accuracy of the 
overall result can have a significant improvement.  
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Appendix 
1. Python for Fourier Transform 

import wave 
import pylab as pl 
import numpy as np 
from numpy import fft as fft 
import matplotlib 
 
import subprocess 
 
# convert to wav 
command = "ffmpeg -i ANote.m4a -ab 160k -ac 2 -ar 44100 -vn ANote.wav" 
subprocess.call(command, shell=True) 
 
# read the file  
f = wave.open("testpiano.wav") 
nframes = f.getnframes() 
framerate = f.getframerate() 
str_data = f.readframes(nframes) 
f.close 
 
wave_data = np.fromstring(str_data, dtype = np.short) # returns an array of data type short 
if (f.getnchannels()) == 2: 
 wave_data.shape = -1, 2 
 wave_data = wave_data.T 
time = np.arange(0, nframes) * (1.0 / framerate) 
 
#Fourior Transformation 
if(f.getnchannels()==2): 
 fourior =  np.fft.fft(wave_data[0]) 
 n = len(wave_data[0]) 
else: 
 fourior =  np.fft.fft(wave_data) 
 n = len(wave_data) 
 
# plotting 
fourior = fourior[0:(n/2)] 
fourior = fourior / float(n) 
freqArray = np.arange(0, (n/2), 1.0) * (44100*1.0/n) 
 
a=abs(10*fourior) 
aMax = max(a) 
b=a/aMax 
 
pl.plot(freqArray/1000, b) 
axes = pl.gca() 
axes.set_xlim([0,5]) 
pl.xlabel('Frequency (kHz)') 
pl.ylabel('Relative Amplitude') 
pl.title('Frequency Spetrum of Piano') 
pl.show() 
 
 



2. MATLAB 
2D Graph 1 

3. function pdemodel 
4. [pde_fig,ax]=pdeinit; 
5. pdetool('appl_cb',1); 
6. set(ax,'DataAspectRatio',[1 1 1]); 
7. set(ax,'PlotBoxAspectRatio',[1.5 1 1]); 
8. set(ax,'XLim',[-1.5 1.5]); 
9. set(ax,'YLim',[-1 1]); 
10. set(ax,'XTickMode','auto'); 
11. set(ax,'YTickMode','auto'); 
12. pdetool('gridon','on'); 
13.   
14. % Geometry description: 
15. pdepoly([ -0.9943257676902536,... 
16.  -0.93424566088117489,... 
17.  -0.8781708945260347,... 
18.  -0.84212283044058744,... 
19.  -0.79806408544726293,... 
20.  -0.72997329773030706,... 
21.  -0.605807743658211,... 
22.  -0.51769025367156196,... 
23.  -0.3214285714285714,... 
24.  0.15120160213618128,... 
25.  0.49165554072096107,... 
26.  0.60781041388518053,... 
27.  0.72396528704939955,... 
28.  0.84813084112149584,... 
29.  1.0123497997329776,... 
30.  1.068424566088118,... 
31.  0.97630173564753031,... 
32.  0.93224299065420579,... 
33.  0.62383177570093507,... 
34.  0.65186915887850505,... 
35.  0.86014686248331129,... 
36.  0.88818424566088172,... 
37.  0.84813084112149584,... 
38.  0.82009345794392541,... 
39.  0.80006675567423269,... 
40.  0.70794392523364502,... 
41.  0.63584779706275052,... 
42.  0.75600801068090817,... 
43.  0.76802403204272407,... 
44.  0.60781041388518053,... 
45.  0.41955941255006679,... 
46.  -0.23331108144192259,... 
47.  -0.58578104138851805,... 
48.  -0.5937917222963951,... 
49.  -0.56174899866488648,... 
50.  -0.41355140186915884,... 
51.  -0.38551401869158863,... 
52.  -0.45360480640854473,... 
53.  -0.56975967957276374,... 
54.  -0.68190921228304391,... 
55.  -0.72997329773030706,... 
56.  -0.72997329773030706,... 
57.  -0.75,... 
58.  -0.79005340453938588,... 
59.  -0.80607476635514019,... 
60.  -0.80607476635514019,... 
61.  -0.85413885180240312,... 
62.  -0.93024032042723626,... 
63.  -0.99032042723631508,... 
64. ],... 
65. [ 0.39452603471295045,... 
66.  0.3264352469959948,... 
67.  0.32242990654205617,... 
68.  0.35447263017356501,... 
69.  0.46662216288384517,... 
70.  0.21829105473965305,... 
71.  0.3985313751668893,... 
72.  0.46261682242990654,... 
73.  0.526702269692924,... 
74.  0.52269692923898559,... 
75.  0.51468624833110832,... 
76.  0.45060080106809108,... 



77.  0.29439252336448618,... 
78.  0.210280373831776,... 
79.  0.16622162883845149,... 
80.  -0.31441922563417868,... 
81.  -0.34245660881174866,... 
82.  -0.53070761014686219,... 
83.  -0.5627503337783708,... 
84.  -0.45861148197596768,... 
85.  -0.27837116154873143,... 
86.  -0.038050734312416346,... 
87.  0.026034712950601113,... 
88.  -0.014018691588784771,... 
89.  -0.11415220293724948,... 
90.  -0.20627503337783692,... 
91.  -0.22630173564752987,... 
92.  -0.06208277703604792,... 
93.  0.062082777036048364,... 
94.  0.21428571428571441,... 
95.  0.29038718291054755,... 
96.  0.31041388518024049,... 
97.  0.12216288384512697,... 
98.  0.030040053404539524,... 
99.  -0.042056074766354978,... 
100.  -0.11815754339118811,... 
101.  -0.19025367156208262,... 
102.  -0.20226969292389829,... 
103.  -0.12616822429906516,... 
104.  0.09012016021361835,... 
105.  0.062082777036048364,... 
106.  -0.11415220293724948,... 
107.  -0.16622162883845104,... 
108.  -0.16622162883845104,... 
109.  -0.12216288384512652,... 
110.  0.050066755674232466,... 
111.  0.094125500667556983,... 
112.  0.094125500667556983,... 
113.  -0.038050734312416346,... 
114. ],... 
115.  'P1'); 
116. set(findobj(get(pde_fig,'Children'),'Tag','PDEEval'),'String','P1') 
117.   
118. % Boundary conditions: 
119. pdetool('changemode',0) 
120. pdesetbd(49,... 
121. 'dir',... 
122. 1,... 
123. '0',... 
124. '0') 
125. pdesetbd(48,... 
126. 'dir',... 
127. 1,... 
128. '1',... 
129. '0') 
130. pdesetbd(47,... 
131. 'dir',... 
132. 1,... 
133. '1',... 
134. '0') 
135. pdesetbd(46,... 
136. 'dir',... 
137. 1,... 
138. '1',... 
139. '0') 
140. pdesetbd(45,... 
141. 'dir',... 
142. 1,... 
143. '1',... 
144. '0') 
145. pdesetbd(44,... 
146. 'dir',... 
147. 1,... 
148. '1',... 
149. '0') 
150. pdesetbd(43,... 
151. 'dir',... 
152. 1,... 
153. '1',... 
154. '0') 



155. pdesetbd(42,... 
156. 'dir',... 
157. 1,... 
158. '1',... 
159. '0') 
160. pdesetbd(41,... 
161. 'dir',... 
162. 1,... 
163. '1',... 
164. '0') 
165. pdesetbd(40,... 
166. 'dir',... 
167. 1,... 
168. '1',... 
169. '0') 
170. pdesetbd(39,... 
171. 'dir',... 
172. 1,... 
173. '1',... 
174. '0') 
175. pdesetbd(38,... 
176. 'dir',... 
177. 1,... 
178. '1',... 
179. '0') 
180. pdesetbd(37,... 
181. 'dir',... 
182. 1,... 
183. '1',... 
184. '0') 
185. pdesetbd(36,... 
186. 'dir',... 
187. 1,... 
188. '1',... 
189. '0') 
190. pdesetbd(35,... 
191. 'dir',... 
192. 1,... 
193. '1',... 
194. '0') 
195. pdesetbd(34,... 
196. 'dir',... 
197. 1,... 
198. '1',... 
199. '0') 
200. pdesetbd(33,... 
201. 'dir',... 
202. 1,... 
203. '1',... 
204. '0') 
205. pdesetbd(32,... 
206. 'dir',... 
207. 1,... 
208. '1',... 
209. '0') 
210. pdesetbd(31,... 
211. 'dir',... 
212. 1,... 
213. '1',... 
214. '0') 
215. pdesetbd(30,... 
216. 'dir',... 
217. 1,... 
218. '1',... 
219. '0') 
220. pdesetbd(29,... 
221. 'dir',... 
222. 1,... 
223. '1',... 
224. '0') 
225. pdesetbd(28,... 
226. 'dir',... 
227. 1,... 
228. '1',... 
229. '0') 
230. pdesetbd(27,... 
231. 'dir',... 
232. 1,... 



233. '1',... 
234. '0') 
235. pdesetbd(26,... 
236. 'dir',... 
237. 1,... 
238. '1',... 
239. '0') 
240. pdesetbd(25,... 
241. 'dir',... 
242. 1,... 
243. '1',... 
244. '0') 
245. pdesetbd(24,... 
246. 'dir',... 
247. 1,... 
248. '1',... 
249. '0') 
250. pdesetbd(23,... 
251. 'dir',... 
252. 1,... 
253. '1',... 
254. '0') 
255. pdesetbd(22,... 
256. 'dir',... 
257. 1,... 
258. '1',... 
259. '0') 
260. pdesetbd(21,... 
261. 'dir',... 
262. 1,... 
263. '1',... 
264. '0') 
265. pdesetbd(20,... 
266. 'dir',... 
267. 1,... 
268. '1',... 
269. '0') 
270. pdesetbd(19,... 
271. 'dir',... 
272. 1,... 
273. '1',... 
274. '0') 
275. pdesetbd(18,... 
276. 'dir',... 
277. 1,... 
278. '1',... 
279. '1') 
280. pdesetbd(17,... 
281. 'dir',... 
282. 1,... 
283. '1',... 
284. '0') 
285. pdesetbd(16,... 
286. 'dir',... 
287. 1,... 
288. '1',... 
289. '0') 
290. pdesetbd(15,... 
291. 'dir',... 
292. 1,... 
293. '1',... 
294. '0') 
295. pdesetbd(14,... 
296. 'dir',... 
297. 1,... 
298. '1',... 
299. '0') 
300. pdesetbd(13,... 
301. 'dir',... 
302. 1,... 
303. '1',... 
304. '0') 
305. pdesetbd(12,... 
306. 'dir',... 
307. 1,... 
308. '1',... 
309. '0') 
310. pdesetbd(11,... 



311. 'dir',... 
312. 1,... 
313. '1',... 
314. '0') 
315. pdesetbd(10,... 
316. 'dir',... 
317. 1,... 
318. '1',... 
319. '0') 
320. pdesetbd(9,... 
321. 'dir',... 
322. 1,... 
323. '1',... 
324. '0') 
325. pdesetbd(8,... 
326. 'dir',... 
327. 1,... 
328. '1',... 
329. '0') 
330. pdesetbd(7,... 
331. 'dir',... 
332. 1,... 
333. '1',... 
334. '0') 
335. pdesetbd(6,... 
336. 'dir',... 
337. 1,... 
338. '1',... 
339. '0') 
340. pdesetbd(5,... 
341. 'dir',... 
342. 1,... 
343. '1',... 
344. '0') 
345. pdesetbd(4,... 
346. 'dir',... 
347. 1,... 
348. '1',... 
349. '0') 
350. pdesetbd(3,... 
351. 'dir',... 
352. 1,... 
353. '1',... 
354. '0') 
355. pdesetbd(2,... 
356. 'dir',... 
357. 1,... 
358. '1',... 
359. '0') 
360. pdesetbd(1,... 
361. 'dir',... 
362. 1,... 
363. '1',... 
364. '0') 
365.   
366. % Mesh generation: 
367. setappdata(pde_fig,'Hgrad',1.3); 
368. setappdata(pde_fig,'refinemethod','regular'); 
369. setappdata(pde_fig,'jiggle',char('on','mean','')); 
370. setappdata(pde_fig,'MesherVersion','preR2013a'); 
371. pdetool('initmesh') 
372. pdetool('refine') 
373. pdetool('refine') 
374.   
375. % PDE coefficients: 
376. pdeseteq(1,... 
377. '-1',... 
378. '0',... 
379. '0',... 
380. '1.0',... 
381. '0:10',... 
382. '0.0',... 
383. '0.0',... 
384. '[0 100]') 
385.   
386. setappdata(pde_fig,'currparam',... 
387. ['-1';... 
388. '5000';... 



389. '0';... 
390. '1.0  ']) 
391.  display(a) 
392.   
393.   
394.   
395.   
396. % Solve parameters: 
397. setappdata(pde_fig,'solveparam',... 
398. char('0','5616','10','pdeadworst',... 
399. '0.5','longest','0','1E-4','','fixed','Inf')) 
400.   
401. % Plotflags and user data strings: 
402. setappdata(pde_fig,'plotflags',[1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 1]); 
403. setappdata(pde_fig,'colstring',''); 
404. setappdata(pde_fig,'arrowstring',''); 
405. setappdata(pde_fig,'deformstring',''); 
406. setappdata(pde_fig,'heightstring',''); 
407.   
408.   
409. % Solve PDE: 
410. pdetool('solve') 
411.   
412. pdetool('exportsolution') 

 
2D Graph 1 PDE Solution 

413. for i=1:1:N;  
414.     j=0.05+0.05*i; 
415.     output(i,1)=j; 
416.     specifyCoefficients(model,'m',0,... 
417.                           'd',0,... 
418.                           'c',-1,... 
419.                           'a',4*(pi/j)^2,... %this is the wavelength part 
420.                           'f',0); 
421.     result = solvepde(model); 
422.     querypoints = [-0.95,0.2]'; 
423.     output(i,2)=abs(interpolateSolution(result,querypoints)); 
424.   
425.      
426. end 
427. outputMax = max(output(:,2)); 
428. scatter(output(:,1)*0.147,output(:,2)/outputMax); 

 
3D Graph 1 PDE Solution 

429. model = createpde(); 
430. importGeometry(model,'cavi_bend.stl') 
431.   
432. pdegplot(model,'FaceLabels','on','FaceAlpha',0.1) 
433. applyBoundaryCondition(model,'dirichlet','Face',9,'r',100,'h',1); 
434. applyBoundaryCondition(model,'dirichlet','Face',10,'r',0,'h',0); % 100% reflection; you 

can make it a mix b.condition 
435. applyBoundaryCondition(model,'neumann','Face',1:8,'g',0,'q',0); 
436. applyBoundaryCondition(model,'neumann','Face',11:14,'g',0,'q',0); 
437.   
438. generateMesh(model); 
439.   
440. N=1000; 
441. output=zeros(N,2); 
442.   
443. for i=1:1:N;  
444.     j=0.05+0.05*i; 
445.     output(i,1)=j; 
446.     specifyCoefficients(model,'m',0,... 
447.                           'd',0,... 
448.                           'c',-1,... 
449.                           'a',4*(pi/j)^2,... %this is the wavelength part 
450.                           'f',0); 
451.     result = solvepde(model); 
452.     querypoints = [0.5,-0.5,14.5]'; 
453.     output(i,2)=abs(interpolateSolution(result,querypoints)); 
454. end 
455. outputMax = max(output(:,2)); 
456. scatter(output(:,1)*0.147,output(:,2)/outputMax); 
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