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ABSTRACT 

We study the friction induce reciprocation motion of a ring with 

rigid body dynamics. When rotate a horizontal oiled shaft around its 

axis and ring a ring on the shaft, the relative motion between the ring 

and shaft will lead to friction forces along the axis. Under the action of 

friction forces, supporting force and gravitational force, the ring will 

move along the axis and rotate about the contact point between the 

ring and shaft. The direction of friction along the axis changes as the 

ring rotate, leading to reciprocation motion. The experiment show that 

there is a critical thickness of the ring, beyond which the amplitude of 

reciprocation motion does not decay with time. We employ rigid body 

dynamics to model the motion of ring. The simulation is in good 

agreement with experiments. 
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1 INTRODUCTION 

 

1.1 Introduction 

 According to our intuition, when ringing a ring on a horizontal rotating oiled shaft 

and release ring from rest, the friction force at the contact point is perpendicular to the 

axis of the shaft. Under the action of friction force, the ring would begin rotating in same 

direction as the shaft, but would not move along the axis. But in our experiment, the ring 

moves back and forth along the axis of the shaft, as showed in the video. When the 

thickness of the ring is beyond a critical value, the amplitude of motion keeps constant, 

even though the friction force is supposed to lead to dissipation of kinetic energy. The 

main purpose of the present paper is to explain the mechanism of the reciprocation 

motion. 

   

 

1.2 List variables 

 

 

𝒎-The mass of the ring 

𝝆-the density of the ring 

𝑹-The Outer diameter of the ring 

𝐝-The thickness of the ring 

𝒓-the diameter of the shaft 

𝐤-The coefficient of friction 

𝒇-The friction force 

𝐈-The rotation inertia about different axis 

𝛀-The angular velocity of the rotation frame 

𝛚-The angular velocity of the shaft 

𝑴-The turning torque  

𝑽𝒛-The translational velocity 

𝑽𝒓-The rotation velocity 

∆𝒗-The relative velocity between the ring and the shaft 

θ-The angle between the z-axis and the projection of rotation axis of the cardboard 

ring in the y-z plane 

δ- the angle between the angular velocity vector and the y-z plane 

φ-The rotation angle about the axis of the ring of the ring 

𝜶-The angle between normal direction of the Contact surface and the vertical direction 

𝒛-The displacement along the shaft 
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1.3 Experimental set up 

 

 
Figure 1 Experimental setup. 1. Steel horizontal shaft 2. Speed regular module 3. Level gauge 

4. Electric motor 5. Mechanical releasing structure 6. Ring 

 

 
Figure 2 Data analysis method 

  

 

Figure 1 Experimental shows our experimental devices in research. We use an electric 

motor with a speed regular module to control the angular velocity, which could increase 

smoothly from 50 rad/s to 100 rad/s. And a 40cm straight steel horizontal shaft to 

Minimize unnecessary vibrations as much as possible. We use Acrylic material rings with 

different diameter and thickness to investigate the effect of geometry on the motion. To 

minimize initial releasing velocity, we also make a mechanical releasing structure. 

 

We use the Tracker software to trace the upper and lower edge of the ring, which is 

shown in Figure 2. From these data, we can calculate the velocity of translation, as well as 

the angular velocity vector. 
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Figure 4 motion schematic diagram 

 

1.4 Preliminary Experiment 

 

Figure 5 Side view for Pre-Experiment 

  

We can directly observe the basic phenomenon of this problem in Side view of figure 

4 and the z-t diagram in figure 2. Here we take the axis of shaft as the z axis, and the 

release point as the origin. The positive direction of the z axis shows the direction of 

angular velocity vector of shaft according to the right-hand rule. The direction of angle 

𝜃 can be defined by taking the cross product between the angular velocity vector of the 

ring and the positive direction of z axis. Taking the lower panel of Figure 4 for example. 

Since the ring and shaft rotate in the same direction, the angular velocity vector of the 

ring point to the lower right corner after projection to the horizontal plane. The cross 

product between the angular velocity vector of the ring and the positive direction of z 

axis lead to a vector point outside of the paper. The corresponding tile angle is defined 

as a positive one. In contrast, the angle 𝜃 in the upper panel of figure 4 is a negative 

one. 

 

We release the ring from rest with a positive tile angle. Figure 2 shows that the ring 

move in the positive direction in the 0~0.15s, then change its direction of velocity and 

move along the negative direction of z axis. As time lapse, the ring moves back and forth 

with a decaying amplitude, and increasing period. The angle 𝜃 also shows oscillation. It 

Figure 3 
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is positive (negative) when the velocity of ring is along the positive (negative) direction of 

z axis. When the ring is at the furthest place on the shaft, both the velocity and the angle 

𝜃 is zero.  

 

   After a large number of experiments, we the period the decaying rate of amplitude 

of reciprocation motion depend on the ratio of the thickness to the diameter of the ring 

of the shaft. Figure 6 through 8 shows some typical example. 

 

 

 

Figure 6 A very thin ring 

In this situation, the amplitude of the reciprocation motion is larger than the length of 

shaft. The ring move in the negative direction at first and then turn to move in the positive 

direction until it hit the end of the shaft. We do not observe a full circle of reciprocation 

motion. 

 
 

Figure 7 Relatively thick ring 

A ring with a larger thickness moves back and forth on the shaft periodically. The 

amplitude of this motion, including the 𝜃 − 𝑡 and 𝑧 − 𝑡 diagram, is damped over time, 

and eventually shrink to zero. This means the ring will keep rolling with translation motion 

in the end. 
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Figure 8 Very thick ring 

 For a very thick ring, the motion depends on the release angle. When the release 

angle is smaller than a critical value, the amplitude of this motion shrink to zero. When 

the release angle is smaller than a critical value, the reciprocating motion gradually turned 

to be a stable motion with a stable period and amplitude. This mean that energy 

dissipation and energy input are equal. But the question is during which time the energy 

is inputted to the ring. 

 

 

 

2 THEORY 

2.0 Analysis for pre-experiment 

 There are basically three phenomena if we place the axis horizontally:  

1. When the ring is very thin, the ring begins a one-direction movement after a short 

turn.  

2. While the ring is relative thick, the amplitude of the ring is decaying, which means 

the amplitude of the reciprocating motion and the angle between the axis of the ring 

decrease continuously.  

3. For a thick ring, a stable reciprocating motion mode is possible when we release 

the ring with a large tilt angle 𝜃. 

The first phenomena are essentially the same as the second one. Due to the limited 

length of the shaft, it is impossible to complete an intact cycle, thus presenting the illusion 

of a one-way movement. 

As a summary of the experimental results, we can conclude that the thickness of the 

ring plays decisive role in different patterns of motion. 

For the experimental result, we have three question to answer 

1. Now that the linear velocity of the surface of shaft is perpendicular to the axis, 

and the friction force is opposite to the relative motion between the ring and 

shaft, which force lead to the reciprocating motion of ring? 

2. Which role dose the thickness of ring played in determine the amplitude and 

period of reciprocating motion? 

3. Why the reciprocating motion become a stable one when the thickness of ring 

and releasing tilt angle are large than a critical value? 
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2.1 Degrees of freedom 

 The system consists of two parts, the ring and the shaft. If we assume that the ring is 

in contact with the shaft, and neglect the thickness of the ring, this rigid body system has 

five degrees of freedom. Two of them describes the the position of contact point on the 

surface of the shaft, which correspond to the translational motion of the ring. The other 

three describe the angular velocity vector, as shown in the second panel of figure 9.In the 

following, we give a definition of degrees of freedom. 

 
Figure 9 

We take the release point as the origin, defined Z axis as the axial direction, the X-axis 

as upright direction, and the Y-axis is in the horizontal plane. The X, Y and Z axis form a 

right hand coordinate with Z axis parallel to the angular velocity vector of the shaft. This 

definition of Z-axis is the same as that in section 1.4. The z coordinate describes the 

translational motion of ring along the shaft. 𝜶  is set as the angle between normal 

direction of the Contact surface and the vertical direction. It describes the height of 

contact point relative to the axis of shaft. We define the angle θ and δ to describe the 

direction of angular velocity vector of the ring . θ is the angle between the z-axis and 

the projection of angular velocity vector of ring in the y-z plane. δ is the angle between 

the angular velocity vector and the y-z plane. The rotation angle about the axis of the 

ring of the ring is set as φ .  

 So 𝒛 and 𝜶 are the translational degree of freedom which determined the location 

of the contact point.  𝜽, 𝜹 and 𝝋 are the rotational degree of freedom here, which 

describe the angular velocity vector of the ring; (Figure 9). Fisrtly, 𝜽 is exactly the tilt 

angle we defined in previous section. Secondly, it should be noticed that 𝜽, 𝜹 and 𝝋 in 

this problem are not the Euler angles. 

 

 
Figure 10 Schematic diagram of the five degrees of freedom 
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2.2 Effect of the Thickness 

 In defining the five degree of freedom in section 2.1, we we do not consider the 

thickness of the ring. After careful examine the dynamic equation, we find that the neither 

friction or the support force produce a torque along the x axis which can drive the ring 

to change the value of angle 𝜃. It is in contradiction to our experiment in which tilt angle 

𝜽 oscillate with time. Consequently, we have to take thickness into consideration. 

 On the other hand, when taking thickness into account, the contact between the ring 

and shaft would change during the motion. Therefore, we have to discuss the possible 

contact configuration. 

 

2.2.1 Two-point contact& One-point contact 

I. 

 

 

If the axis of shaft is perpendicular to the ring, namely the tile angle is zero, the 

surface of shaft and the fillet of the ring are tangent. The tangent points lie on a line 

segment on the surface of the shaft. The support is vertical upward, and no torque 

appeared. 

 

When tile angle 𝜽 ≠ 𝟎 and 𝜹 = 𝟎, the fillet of the ring is tangent to the surface of 

shaft at two points, one on each surface of the ring. The supporting force perpendicular 

to the surface of the shaft at each contact point generate a restoring torque to drive the 

tile angle back to equilibrium location (θ = 0)，as shown in the vertical view of figure 11. 

 

Figure 12 relationship between restoring torque and θ 

Figure 11 Two Point Contact Situation from vertical and axial view 

Before tilt After tilt 
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Suppose the resultant force of N1 and N2 is in equilibrium with the gravity force, we 

can calculate N1 and N2 as a function of tile angle θ. Further we obtain the relationship 

between the restoring torque and θ (this time we Ignore the acceleration in vertical 

direction) This torque is increasing rapidly, which means that the energy required for a 

larger Angle is increasing exponentially, so the ring is well constrained to a certain range 

of angles. We get very good results with exponential fitting.(Figure 13) 

 

Another two influence factor is the ratio of the thickness d to inner diameter and the 

ratio of the diameter of the shaft to inner diameter of the ring. It’s obvious that these two 

ratios are positive related to the restoring torque. The smaller the ring, the thicker the 

disk, the more significant the geometric constraint is, this lead to bigger restoring torque. 

 

 When angle θ is changing, the two contact points move relatively on the surface of 

shaft, so the friction will produce a resistance torque and lead to the energy dissipation.  

  

II. 

When both 𝜽 ≠ 𝟎 and 𝜹 ≠ 𝟎, the ring contact with the shaft surface at one point. Due 

to the finite thickness of ring, the torque of supporting fore and gravity force play the 

role of restoring force of 𝜽 and 𝜹. 

 
Figure 13 

Because of the thickness of the disk, the friction along the Y-axis can also provide a 

steering torque at this point, and it’s obvious that this torque and the thickness d is 

positive correlated. 

 

III . 

 To determine whether the ring and shaft contact at one point or two point, we take 

a frame of reference in which the ring is at rest. Then we assume the system in two-point 

contact mode and take one of the contact point as the pivot. If the torque of inertial fore 

in smaller than the torque of gravity, the angle δ keeps equal 0 and the system keeps in 

two point contact mode. But If the torque of inertial fore in larger than the torque of 

gravity, the 𝜹 ≠ 𝟎 and the ring contact with the shaft at one point. 

 As a conclusion of this section, the angle between the shaft and the angular velocity 



 

10 

 

vector of the ring changes periodically, due to the restoring torque of supporting force, 

gravity force and friction.  

 

2.3 Reciprocating motion 

  

 The reciprocating motion along the shaft implies restoring force along the shaft. 

Three force exists in this system, namely the gravity force, the supporting force and the 

friction. The gravity force and the support which is perpendicular to the shaft axis cannot 

provide axial force. So the friction force plays a vital role in the reciprocation. In the 

following, we will prove that the direction of friction changes as the tile angle of ring 

changes. 

 

 

2.3.1 Relative velocity at the contact point 

 

Figure 14 Contact point velocity    Figure 15 Different conditions with different 𝑽𝒛 

 Since the shaft is oiled, we assumed the friction force is proportional to the support 

and the relative velocity. Where �⃑� = 𝒌∆𝒗⃑⃑⃑⃑  ⃑. 

In figure 15 we can find the contact point velocity of the ring during movement can 

be divided into translational velocity 𝑽𝒛 and rotation velocity 𝑽𝒓. The velocity of the axis 

at this point is 𝜴𝒓. 

Then we get the resultant velocity of the ring (the red arrow) and the relative velocity 

between the axis and the ring at the contact point (the green arrow). As The friction force 

is proportional to the relative velocity, so the green arrow in the diagram is the direction 

of friction. 

On one hand, the translational velocity 𝑽𝒛 of the ring determine the direction of the 

friction (Figure 16). Suppose the 𝑽𝒓 dose not change. When 𝑽𝒛 is relatively small, the z 

component of friction, namely the z component of green arrow, is the same as the 

direction of 𝑽𝒛, as shown in the left panel of figure 16. So ring is accelerating. When 𝑽𝒛 

is larger, the friction component is reversed with the 𝑽𝒛, so the ring decelerate, as shown 

in the right panel of figure 16. If 𝑽𝒓 do not change, the translational velocity 𝑽𝒛 will 

reach a constant value which is equal to the z component of 𝑽𝒓. 

On the other hand, when the tile angle change, the direction of 𝑽𝒓 also change. 
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Suppose the 𝑽𝒛 keeps constant. When the tilt angle is large, z component of 𝑉𝑟 is larger 

that 𝑽𝒛, ring is accelerating. When the tilt angle is small, z component of 𝑉𝑟 is smaller 

that 𝑽𝒛, ring is decelerating. 

As a summary of this section, we show that the direction of friction depends on both 

translational velocity 𝑽𝒛  and tile angle 𝜽 . As the tile angle change periodically, the 

direction of friction also changes. This is the essence of reciprocating motion along the 

shaft. 

 

2.3.2 Qualitative Explanation 

 According to the analysis from 2.3.1 and 2.3.2, the reasons for the systematic 

reciprocating movement can be explained.  

On on hand, after being released with a finite tilt angle, the ring will begin to rotate 

around its symmetry axis due to the friction between ring and shaft. The rotational 

angular velocity reaches a stable value quickly. At the same time, since 𝑽𝒛 is still small, 

friction is along the positive z axis. This explain why the ring will move along the positive 

z axis just after being release, as indicate by the motion during 0~0.15s in figure 3. 

 On the other hand, due to restoring torque of supporting force and friction, the tilt 

angle quickly decreases from positive value to negative value. The direction of friction 

also also changes at the same time. This explain why the ring change the direction of 

motion after 0.15s, as shown in figure 3. 

In the following time, the tilt angle will oscillate due to the restoring torque of 

supporting fore and friction force. As the tilt angle change periodically, the direction of 

friction also changes periodically, which lead to reciprocation motion along the z axis. 

 

2.3.3 Dimensional analysis 

In this problem, there are five basic variables:  

density ρ of the ring, rotation moment of inertia J, the inner diameter and the outer 

diameter R of the ring ,the diameter of the shaft r ,thickness of the ring d, initial releasing 

angle θ, angular velocity of the shaft 𝜴,coefficient of the Friction k. 

Now we're going to do some dimensional analysis. 

First for the turning torque M cause by the supporting force and the rotation inertia 

J of the ring: 

M ∝ ρgR2𝑑2     , J ∝ ρR4𝑑 

And then we can get the angular momentum of the ring L , we can understand the 

motion as the torque here drives the ring to do precessional motion, where �⃑⃑⃑� = �⃑⃑⃑� ×

�⃑⃑�  ,so we can also get the cycle T here. 

L ∝ JΩ ∝ ρR4𝑑Ω 

T ∝ θLM−1 ∝ θ g−1R2𝑑−1Ω 

f represents the friction force, and a means the acceleration along the shaft 

f ∝ kmgv ∝ kρgR2𝑑Ωr 

a ∝ θfm−1 ∝ θkgΩr 

A ∝ aT2 ∝ θ3𝑘𝑔−1𝑅4𝑑−2Ω3r 
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Finally, we can get the expression of the amplitude A above. 

We can actually find that the cycle and the amplitude is positive related with the 

initial angle, outer diameter and the angular velocity of the shaft, while it’s negative 

related to the thickness 

         

2.4 Two patterns of motion 

As we discussed in the section 1.4, the amplitude of reciprocation motion decay when 

the ring is not thick enough. But when the thickness is beyond a critical value, to 

reciprocation motion become stable. If examine this problem in terms of Energy, it means 

that the energy input is smaller than the energy dissipation when the ring is not thick 

enough. When we increase the thickness, the energy input increases or energy dissipation 

decreases. Beside, even for the same ring, different initial releasing angle lead to different 

patterns of motion. A larger releasing angle may lead to a stable motion, and a smaller 

one lead to a damped one.u 

In this system, the energy is inputted through the work done by friction, and dissipate 

through the work done by friction. First consider the effect of friction on translational 

motion along the shaft. The friction tends to increase 𝑽𝒛  when 𝑽𝒛 is small, while tends 

to decrease 𝑽𝒛 when 𝑽𝒛 is large. This mean the friction in translational motion tend to 

balance the energy input and dissipation, thus is irrelevant to the decay of amplitude of 

reciprocation motion. Then consider the tilting of ring. As the tilt angle increase, the 

height of center of mass increases, and so do the gravity potential energy. When the tilt 

angle decrease, the gravity potential energy. This means some energy could be stored as 

potential energy. But in either cases, the torque of friction tends to dissipate the energy 

into heat. So it is an important ingredient. 

Through experimental observation, we found that in the stable pattern of motion, 

the ring mainly contact with the shaft at one point, while in the attenuation motion the 

ring mainly contact with the shaft at one point. During the one-point contact mode, the 

ring could roll on the shaft without sliding. That means the contact point could be move 

on the surface of shaft without any relative displacement. Consequently, no energy 

dissipates through friction. But during the two-point contact mode, the pure roll of ring 

is not possible, and the energy dissipation is inevitable.   

The next question is why the one-point contact dominate over two-point contact 

mode with large thickness or large releasing tile angle. As we state in section 2.2, the 

judging criteria of the one and two-point contact is the axial acceleration of the ring. In 

fact, the acceleration of the disk increase when we increase the thickness and releasing 

tilt angle. When we increase the thickness d of the ring, the torque of supporting force 

increases as M ∝ 𝑑2, while the moment of inertial of the ring increases as J ∝ 𝑑. This 

means the oscillate frequency of tilt angle will increase as 𝑓 ∝ 𝑑0.5. Since the oscillation 

of tilt angle lead to oscillation of friction with the same frequency, both the oscillate 

frequency and amplitude of friction increases, which favor the large translational 

acceleration and one-point contact. Beside, the increase in initial releasing tilt angle lead 

to increase in the amplitude of tilt angle, friction and translational acceleration, which also 

favor one-point contact mode. 
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2.5 Quantitative Theory 

2.5.1 Basic theory 

Because we didn’t use the Euler angle or the Euler function. So in our theory we use 

the angular momentum theorem and the Newton second Law.  

�⃑⃑�  =  
𝐷�⃑� 

𝐷𝑡
  =   

𝑑�⃑� 

𝑑𝑡
  +   �⃑�    ×    �⃑�  

Equation 1 

This equations of the angular momentum theorem are descried the evolution of 

angular velocity vector. Where 
𝐷�⃑� 

𝐷𝑡
 represents the derivative of angular momentum in the 

x y z coordinate;  
𝑑�⃑� 

𝑑𝑡
 represents the derivative of angular momentum in the rotational 

coordinate n1,n2,n3; �⃑�  𝑖𝑠 𝑡ℎ𝑒 angular velocity of the frame.  �⃑�  is the angular momentum 

in the rotational coordinate? So we can actually obtain three equations in the n1,n2,n3 

directions, as it shown in Figure 17. 

 
Figure 16 Defines the direction of the principal axis and the rotation coordinate frame 

�⃑⃑� = 𝑀𝑁
⃑⃑⃑⃑ ⃑⃑   +   𝑀𝑓

⃑⃑⃑⃑  ⃑  +  𝑀𝑑
⃑⃑ ⃑⃑  ⃑ 

�⃑⃑�  is the torque in x y z coordinate. 

𝑀𝑁
⃑⃑⃑⃑ ⃑⃑  represents the torque cause by the support of two contact point  

𝑀𝑓
⃑⃑⃑⃑  ⃑is cause by the friction and the distance between the contact point and the central of 

mas when the ring is being tossed up. 

𝑀𝑑
⃑⃑ ⃑⃑  ⃑is the damping torque caused by the moving of the contact point on the shaft when 

angleθ is changing 

𝐹 = 𝑚𝑎  
Equation 2 

We also employ the Newton second law to describe how center of mass of the ring move 
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under the action of friction. We can also get three equations in x y z directions. There are 

already 6 equations, exactly the five degrees of freedom plus the supporting force. Which 

means our theory is self-consistent. 

 

𝐹 = 𝐹𝐺
⃑⃑⃑⃑   +   𝐹𝑁

⃑⃑ ⃑⃑    +   𝐹𝑓
⃑⃑  ⃑ 

𝐹𝐺
⃑⃑⃑⃑   is the gravity force, 𝐹𝑁

⃑⃑ ⃑⃑   is the supporting force, 𝐹𝑓
⃑⃑  ⃑ is the frictional force. 

2.5.2 Simplification 

 Since the simulation of exact function is time consuming, we simplify our equation 

by two assumptions. 

 Firstly, according to our experiment, 𝛼  and 𝛿  are small quantities oscillating 

around zero. So during the solution, we set 𝛼＝0 and 𝛿＝0. The comparison between 

the approximate solution and the exact solution shows that our approximations do not 

lead to observable errors. 

 Secondly, both experiment and exact solution show that the increase in the 

amplitude of angular velocity 𝜔𝑟 with time can be describe by exponential growth plus 

a very small amplitude damped vibration. Therefore we neglect the equation of 𝜔𝑟, fit 

the function of it, and substitute the fitted function to the equation of z and 𝜃 to simplify 

the equations. 

 

Figure 17 

 

3. Experimental theoretical comparison 

We again focus on the effect of thickness on the motion of ring. The experiments 

were done using rings with inner diameter of about 1cm and outer diameter of about 

3cm，and a shaft with diameter of 0.5cm. 

We can see that for different cases, whether a thin \relatively thick or a very thick ring, 

the experiment is basically consist with our theory prediction. 

. 
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Figure 21 
Figure 20 

Figure 19 Figure 18 

Figure 23 Figure 22 
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4.Conclusion and Prospect 

In this work, we firstly investigate the reciprocation motion of ring on a rotating shaft. 

We found that for rings with finite thickness, the restoring torque of supporting force 

leads to the oscillation of tilt angle. Consequently, the relative velocity and friction fore 

between the ring and shaft also show oscillation with the same frequency, which finally 

leads to reciprocation motion along the shaft.  

Secondly, by examining the motion of ring in terms of energy, we discover two kinds 

of contact mode between the ring and shaft, namely one-point contact and two-point 

contact. Although these two modes of contact can both produce a restoring torque, the 

extra energy dissipation is inevitable when the ring and shaft contact at two different 

point. Therefore, when the two-point contact mode dominate during the motion of ring, 

the energy and amplitude of reciprocation motion would decay with time. 

Finally, to test our model, we employ rigid body dynamics to describe the evolution 

of motion. The simulation result is in good agreement with the experiment. 

In the further research, we plan to determine the critical thickness and releasing tilt 

angle. A corresponding phase diagram is also under construction. 
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Appendix1： 

Specific solving process and equation for five degree of freedom rigid body problem 

 

 We first list down the Transition matrix from rotation coordinate(1 2 3 coordinate) to 

ground coordinate(x y z coordinate) T1, and it’s inverse matrix T2 (x y z to 1 2 3 ) 

     𝑇1 = (
𝐶𝑜𝑠𝛿 0 𝑆𝑖𝑛𝛿

𝑆𝑖𝑛𝛿 𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝜃 −𝐶𝑜𝑠𝛿 𝑆𝑖𝑛𝜃
−𝑆𝑖𝑛𝛿 𝐶𝑜𝑠𝜃 𝑆𝑖𝑛𝜃 𝐶𝑜𝑠𝛿 𝐶𝑜𝑠𝜃

) 

𝑇2 = 𝑇1
−1 

Then we calculate the normal vector of the ring surface 𝑛1⃑⃑⃑⃑  ,and the normal vector 

of contact point 𝑛2⃑⃑⃑⃑  

𝑛1⃑⃑⃑⃑ = (
𝑆𝑖𝑛𝛿

−𝐶𝑜𝑠𝛿 𝑆𝑖𝑛𝜃
𝐶𝑜𝑠𝛿 𝐶𝑜𝑠 𝜃 

) , 𝑛2⃑⃑⃑⃑ = (
𝐶𝑜𝑠𝛼
𝑆𝑖𝑛𝛼

0
) 

𝑅𝑐
⃑⃑⃑⃑  is the relative position of the center of mass to the contact point in ground 

coordinate. “𝑛1⃑⃑⃑⃑ × (𝑛1⃑⃑⃑⃑ × 𝑛2⃑⃑⃑⃑ )” means the fixed orientation ring is tangent to the shaft. 

𝑆𝑝
⃑⃑⃑⃑  represents the position of the contact point in the x y z coordinate 

So we can get the position of the central of mass 𝑆𝑐
⃑⃑  ⃑ below 

 

𝑅𝑐
⃑⃑⃑⃑ = 2 𝑟  𝑛1⃑⃑⃑⃑ × (𝑛1⃑⃑⃑⃑ × 𝑛2⃑⃑⃑⃑ ) 

𝑆𝑝
⃑⃑⃑⃑ = (

𝑟 𝐶𝑜𝑠𝛼
𝑟 𝑆𝑖𝑛𝛼

𝑧
) 

𝑆𝑐
⃑⃑  ⃑ = 𝑅𝑐

⃑⃑⃑⃑ + 𝑆𝑝
⃑⃑⃑⃑  

Now we consider about the rotation of the ring. 𝛺𝑟
⃑⃑ ⃑⃑   is defined to be the angular velocity 

in the rotational coordinate or the 1,2,3 coordinate. And 𝜔1𝜔2𝜔3 are the components 

of Angular velocity on each principal axis of inertia of the ring. 𝛺𝑐
⃑⃑ ⃑⃑   represents the angular 

velocity in the x,y,z coordinate 

𝛺𝑟
⃑⃑ ⃑⃑  = (

𝜔1

𝜔2

𝜔3

) , 𝛺𝑐
⃑⃑ ⃑⃑  = 𝑇1 ⋅ 𝛺𝑟

⃑⃑ ⃑⃑   

{

𝜔1 = �̇� 𝐶𝑜𝑠𝛿

𝜔2 = �̇�

𝜔3 = �̇� 𝑆𝑖𝑛𝛿 + 𝜔𝑟

 

Knowing the angular velocity and the displacement, we can calculate the relative 

velocity between the ring and the shaft and further ger the magnitude of the friction 

force.  𝑉𝑠⃑⃑⃑   is the velocity of the shaft at the contact point, 𝑉𝑟⃑⃑  ⃑ represents the relative 
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velocity cause by the rotation between the central of mass and the contact. 𝑉𝑐⃑⃑  ⃑ is the 

velocity of the central of mass. 

𝑉𝑠⃑⃑⃑  = (
𝐶𝑜𝑠𝛼 𝛺𝑟
𝑆𝑖𝑛𝛼 𝛺𝑟

0
) 

𝑉𝑟⃑⃑  ⃑ = 𝛺𝑐
⃑⃑ ⃑⃑  × 𝑅𝑐

⃑⃑⃑⃑  
 

𝑉𝑐⃑⃑  ⃑ =
𝑑Sc
⃑⃑  ⃑

𝑑𝑡
, 𝐴𝑐
⃑⃑⃑⃑ =

𝑑2Sc
⃑⃑  ⃑

𝑑𝑡2  

 

𝐹𝑓
⃑⃑  ⃑ = −𝑘(𝑉𝑠⃑⃑⃑  − 𝑉𝑟⃑⃑  ⃑ + 𝑉𝑐⃑⃑  ⃑) = (

−𝑘𝑟𝛼( 𝛺 − 2Cos𝜃ω0) + 𝑂(2)

𝑘𝑟( 𝛺 − 2Cos𝜃 ω + Cos2𝜃𝛼′ − Sin2𝜃 𝛼 𝜃′) + 𝑂(2)

𝑘𝑟(2Sin𝜃 ω + 𝑧′ + 2Sin𝜃(−Cos𝜃𝛼′ + Sin𝜃𝛼𝜃′)) + 𝑂(2)

) 

The expression of the friction force 𝐹𝑓
⃑⃑  ⃑ is shown above, because it’s very complex we 

do linear process and consider 𝛼, 𝛿 as small quantities. 

𝐹𝑁
⃑⃑ ⃑⃑   = (𝑚𝑔 𝐶𝑜𝑠𝛼 + |𝑛1⃑⃑⃑⃑ ⋅ 𝐴𝑐

⃑⃑⃑⃑ |)𝑛1⃑⃑⃑⃑  

�⃗� = 𝐹𝐺
⃑⃑⃑⃑   +   𝐹𝑁

⃑⃑ ⃑⃑    +   𝐹𝑓
⃑⃑  ⃑ 

�⃗� = 𝑚𝐴𝑐
⃑⃑⃑⃑  

Then we use Newton second law to get the expression of the support and finally get 

the two differential equations in y and z direction. 

Now we consider about the angular momentum theorem part. �⃑⃑�  represents the 

torque in x y z coordinate. "𝐹𝛿
𝑑

2
𝑛1⃑⃑⃑⃑ ” means different contact point of the two surface of 

the ring. 

�⃑⃑� = (𝑅𝑐
⃑⃑⃑⃑ + 𝐹𝛿

𝑑

2
𝑛1⃑⃑⃑⃑ ) × F⃑⃗ 

𝐹𝛿 =

{
 
 

 
 1, 𝛿 >

𝑑

2𝑟

𝛿
2𝑟

𝑑
,−

𝑑

2𝑟
≤ 𝛿 ≤

𝑑

2𝑟

−1, 𝛿 < −
𝑑

2𝑟

 

L⃑⃗ represents the angular momentum in 1,2,3 coordinate,  𝜔𝑟⃑⃑ ⃑⃑   represents the angular 

velocity between the rotational coordinate and the ground coordinate. 

L⃑⃗ = (

𝐼1𝜔1

𝐼2𝜔2

𝐼3𝜔3

) ,𝜔𝑟⃑⃑ ⃑⃑  = (

𝜔1

𝜔2

𝜔1𝑇𝑎𝑛𝛿
) 
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{
𝐼1 = 𝐼2 = 𝐼0 = 𝑚(4𝑟2 + 𝑅2)

𝐼3 = 2𝐼0
 

Finally we use the angular momentum theorem and get three equations in each direction. 

�⃑⃑�  =  
𝑑�⃑� 

𝑑𝑡
+ 𝜔𝑟⃑⃑ ⃑⃑  × �⃑�  

The five differential equations for the five degree of freedom is shown below 

2𝑘𝑟𝐶𝑜𝑠𝜃𝛼(𝑟𝜔𝑆𝑖𝑛𝜃 + 𝐶𝑜𝑠𝜃 𝑧′) + 𝐼0(2𝜔0𝛿
′ + 𝜃′′) + 0.01818 (𝑒4.98(𝜃2)

0.5

− 1)𝑚𝑔𝑑 +

1

5
𝑑2𝑘𝜃′ = 𝐹𝛿

𝑑

2
(𝑘(−2𝑟𝜔0 − 𝑆𝑖𝑛𝜃 𝑧′ + 𝑟𝐶𝑜𝑠𝜃(𝜔 + 𝛼′)) + 𝛼(𝑔𝑚𝐶𝑜𝑠𝜃 − 2𝑘𝑟𝑆𝑖𝑛𝜃 𝜃′)),   

Equation 3 

−2𝑘𝑟2𝜔𝑆𝑖𝑛𝜃 − 2𝑔𝑚𝑟 𝑆𝑖𝑛𝜃 𝛼 − 2𝑘𝑟 𝐶𝑜𝑠𝜃 𝑧′ + 2𝑘𝑟2  𝑆𝑖𝑛𝜃 𝛼′ − 2 𝐼0 𝜔 𝜃′ +

𝛿 (2𝑔𝑚𝑟 − 𝐼0𝜃
′2) + 𝐼0𝛿

′′ = 𝐹𝛿
𝑑

2
(−𝑔𝑚 − 𝛿(𝑘𝑟𝜔𝑆𝑖𝑛𝜃 + 𝑘𝐶𝑜𝑠𝜃𝑧′ + 2𝑚𝑟𝛿′′) + 𝑟𝛼(𝑘𝜔 −

2𝑘𝐶𝑜𝑠𝜃𝜔0[𝑡] + 2𝑚𝑆𝑖𝑛𝜃𝛿′′)),   

Equation 4 

2(−𝑘𝑟2𝜔𝐶𝑜𝑠𝜃 + 2𝑘𝑟2𝜔0 + 𝑘𝑟𝑆𝑖𝑛𝜃𝑧′ − 𝑘𝑟2𝐶𝑜𝑠𝜃𝛼′ + 2𝑘𝑟2𝑆𝑖𝑛𝜃𝛼𝜃′ + 𝐼0𝛿
′𝜃′ + 𝐼0𝜔0′ +

𝐼0𝛿𝜃′′) = 0,   

Equation 5 

2𝑘𝑟𝑆𝑖𝑛𝜃𝜔0 + 𝑘𝑧′ − 𝑘𝑟𝑆𝑖𝑛2𝜃𝛼′ + 𝑘𝑟𝛼𝜃′ − 𝑘𝑟𝐶𝑜𝑠2𝜃𝛼 𝜃′ − 4𝑚𝑟𝐶𝑜𝑠2𝜃𝛼′𝜃′ −

4𝑚𝑟𝑆𝑖𝑛𝜃𝛿′𝜃′ + 4𝑚𝑟𝑆𝑖𝑛2𝜃 𝛼 𝜃′2 − 2𝑚𝑟 𝐶𝑜𝑠𝜃 𝛿 𝜃′2 + 𝑚𝑧′′ − 𝑚𝑟𝑆𝑖𝑛2𝜃𝛼′′ +

2𝑚𝑟𝐶𝑜𝑠𝜃𝛿′′ − 2𝑚𝑟𝐶𝑜𝑠2𝜃 𝛼𝜃′′ − 2𝑚𝑟𝑆𝑖𝑛𝜃𝛿𝜃′′ = 0,   

Equation 6 

𝛼(−𝑔𝑚 + 𝑘𝑟𝑆𝑖𝑛2𝜃 𝜃′ + 4𝑚𝑟𝐶𝑜𝑠2𝜃𝜃′2 + 2𝑚𝑟 𝑆𝑖𝑛2𝜃 𝜃′′) − 𝑟(𝑘𝜔 − 2𝑘𝐶𝑜𝑠𝜃𝜔0 +

4𝑚𝐶𝑜𝑠𝜃 𝛿′𝜃′ − 2𝑚𝑆𝑖𝑛𝜃 𝛿 𝜃′2 + 𝛼′(𝑘𝐶𝑜𝑠2𝜃 − 4𝑚𝑆𝑖𝑛2𝜃 𝜃′) + 𝑚𝐶𝑜𝑠2𝜃 𝛼′′ +

2𝑚 𝑆𝑖𝑛𝜃 𝛿′′ + 2𝑚𝐶𝑜𝑠𝜃 𝛿 𝜃′′) = 0  

Equation 7 
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Appendix 2:  

The process of simplification from five to three degree of freedom 

 

This time we ignore the value of 𝛼, and it’s approximately zero. Then the We think 

that the rotation speed of a ring is basically exponential, which is affected very little by 

other factors. 

 

ωr(t) = (1 − 𝑒−𝑝𝑡)2𝛺 

p =
4r2𝑘

𝐼0
 

 

We bring in the expression of ωr(t), and use Newton second law in z direction, 

Angular momentum theorem in 1, 2 direction ,totally three differential equations here  

 

The simplified equation of three degrees of freedom is shown below 

𝑒−𝑝𝑡I0 (𝑝𝛺Sin𝛿 + Cos𝛿 𝛿′((−1 + 𝑒𝑝𝑡)𝛺 + 2𝑒𝑝𝑡Sin𝛿 𝜃′) − 𝑒𝑝𝑡 (−3 +

1

2
 Cos2𝛿) 𝜃′′[𝑡]) + 0.01818 (𝑒4.98(𝜃2)

0.5

− 1)𝑚𝑔𝑑 +
1

5
𝑑2𝑘𝜃′ = 𝐹𝛿

d

2
(𝑘(𝑟𝛺(−1 + 𝑒−𝑝𝑡 +

Cosθ) − Sin𝜃 𝑧′)),  

Equation 8 

−2r(−gmSinδ + krΩCosδSinθ + kCosδCosθz′) − ⅇ−ptI0(pΩCosδSinθ + (−1 +

ⅇpt) Ω CosδCosθθ′ + ⅇptCosδCosθSinδθ′2 − Sinθδ′((−1 + ⅇpt)ΩSinδ − 2ⅇptCosδ2θ′) −

ⅇptCosθδ′′ + ⅇpt Cosδ Sinδ Sinθ θ′′) = Fδ
d

2
(−gm Cosδ − krΩ Sinδ Sinθ −

kCosθ Sinδ z′),   

Equation 9    

𝑘((1 − 𝑒−𝑝𝑡)𝑟𝛺Sin𝜃 + 𝑧′) + 𝑚(−2𝑟Cos𝜃 Sin𝛿 𝛿′2 − 4𝑟Cos𝛿 Sin𝜃 𝛿′𝜃′ −

2𝑟Cos𝜃 Sin𝛿 𝜃′2 + 𝑧′′ + 2𝑟Cos𝛿 Cos𝜃 𝛿′′ − 2𝑟Sin𝛿 Sin𝜃 𝜃′′) = 0  

Equation 10 
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