

Page 1

参赛队员： 陶 重 年

学 校： 南京外国语学校

省 份： 江 苏 省

指导教师： 严 青

论文题目： A Study on

 Constructing Credit Card Fraud Detection Models

Page 2

Table of Contents

Abstract .. 3

I. Background and Problem Restatement .. 4

II. Sample Selection and Data Screening ... 6

2.1 Sample Analysis ... 6

2.2 Sample Screen .. 6

2.2.1 Synthetic Minority Oversampling Technique, SMOTE .. 6

2.2.2 Particle Size Balance Analysis after Oversampling .. 6

2.2.3 Divide Samples ... 7

2.3 Select and Determine Indicators .. 7

2.4 Analysis of Transaction Time ... 9

2.5 Analysis of Transaction Amount .. 10

III. Evaluation Indicators .. 12

3.1 Confusion Matrix ... 12

3.2 Receiver Operating Characteristic Curve ... 13

3.3 Area Under the ROC Curve ... 13

IV. Model I：Logistic Regression Model .. 14

4.1 Build Logistic Regression Model ... 14

4.1.1 Build Logistic Model .. 14

4.1.2 Maximum Likelihood Estimation ... 15

4.2 Model Solution ... 16

4.2.1 Confusion Matrix .. 16

4.2.2 Logistic Model based on Kernel Density Estimation .. 16

4.2.3 Empirical Study on Kernel Density Estimation & Logistic Model 18

4.3 Model Evaluation ... 18

4.3.1 Merits of Linear Logistic Regression Model .. 18

4.3.2 Improvement on Linear Logistic Regression Model ... 18

V. Model II: AdaBoost Ensemble Learning Model .. 19

5.1 Model II: AdaBoost Ensemble Learning Model Based on Single-Layer Decision Tree ... 19

5.2 Model Solution ... 20

5.3 Data Preprocessing ... 21

5.4 AdaBoost Iteration on Weak Classifiers ... 21

5.5 Improvement and Promotion .. 23

VI. Model III: AutoEncoder Deep Learning Model based on Tensorflow 25

6.1 Model Solution ... 25

6.2 Data Preprocessing ... 26

6.3 Build AutoEncoder Model ... 26

6.4 Load Training Model to Identify Test Data .. 26

6.5 Robustness Test .. 30

6.6 Improvement and Promotion .. 31

6.7 Model Evaluation & Comparison .. 32

VII. Conclusion .. 33

Reference .. 34

Page 3

A Study on Constructing Credit Card Fraud Detection Models

Abstract

This paper intends to conduct an in-depth research on risk warnings of credit card frauds.

Logistic regression classification forecasting model is first constructed with desensitized data

set of credit card transactions. Kernel density estimation is utilized to determine model

thresholds, with full consideration of fraud characteristics (time, amount) distribution. Good

performance of logistic regression classification forecasting model on data extracted from

principal component analysis proves that desensitized data can be effectively applied to data

analysis projects, overcoming security concerns of data analysis. For the purpose of thorough

analysis and comparison, AdaBoost ensemble learning model and AutoEncoder model are

further devised based on two methods from traditional machine learning and deep learning, in

order to achieve accurate identification of fraudulent transactions. Comparisons on predicative

ability are made between undersampling and SMOTE oversampling approaches to select the

optimal way of dealing with imbalanced data set.

Considering the serious imbalanced feature of data set which has only 0.17% of frauds,

this paper enhances the forecasting capability of classification model using SMOTE algorithm

to conduct oversampling on fraudulent transaction data set. The classification forecasting

model is then divided into training set and validation set, with a ratio of 7:3, using k-fold cross

validation. Grid search tuning parameters are utilized to optimize the model. Model

evaluation results show that the recall rate of optimized logistic regression classification

forecasting model reaches as high as 98.5%, indicating a strong predictive ability.

The paper then proposes a framework algorithm based on the AdaBoost ensemble

learning model of single-layer decision tree classifier. After randomly selecting 70% as

training set and 30% as test set from the processed data, 8 weak classifiers are set up for

training data using single-layer decision tree algorithm, to perform adaptive parameter

learning through iterative algorithm. Based on various defined indicators, with regard to the

test data of undersampled data set, the recall rate is 93.6%, precision rate is 97.8%, F-score is

0.957, and error rate is 4.13%; with regard to the test data of oversampled data set, the recall

rate is 95.9%, precision rate is 98.8%, F-score is 0.973, and error rate is 2.65%. Therefore, the

results demonstrate that the proposed model has strong fraud detection capability. For ease of

comparison, AutoEncoder model is built up based on Tensorflow and Keras open source

top-level frame work. The model establishes 29 neurons as input layer, uses 4 hidden layers as

encoder and decoder, iteratively updates its parameters using BP algorithm, and at the same

time uses L1 paradigm regularization to help balancing its fitting ability and generalization

ability. Results of the undersampled data set test data are: AUC (Area Under Curve) score is

0.9439, the accuracy of classification is 94.5%; results of the oversampled data set test data

are: AUC score is 0.965, and the accuracy of the classification is 98.7%.

Key Words: Kernel Density, Logistic Regression, AdaBoost Ensemble Learning Model,

AutoEncoder Model

Page 4

I. Background and Problem Restatement

 As a means of payment for non-cash transactions, credit cards have become the most

convenient and most popular credit service with attractive features such as longer interest-free

period, fast and simple procedure. However, the continuous development of the Internet and

information technology has also made the risk of credit card business increasingly apparent.

Compared with other credit methods, credit cards have higher risks with the characteristics of

no mortgage, higher overdue interest rate, technology dependence, being vulnerable to the

economic cycle and easy to cause vicious circle. At present, due to the leakage of customer

information, credit card fraud has become a serious and growing problem. With the economic

downturn, risks of credit card business continue to rise. The Overall Performance of the

Payment Systems in the Second Quarter of 2018 released by the People’s Bank of China

shows that the amount of credit cards with more than half-a-year overdue was 75.667 billion

yuan, a year-on-year increase of 6.35%. Compared with the 7.302 billion yuan in the same

period of 2010, there was a growth of nearly ten times over the past eight years
[1]

. Increasing

number of credit card frauds and malicious overdrafts has caused the industry to attach great

importance to credit card risk management and early warning mechanisms.

Data set of this paper comes from https://www.kaggle.com/mlg-ulb/creditcardfraud. For

the total number of 284,807 credit card transactions, data are pre-processed after PCA

transformation, with no clear meaning and are highly imbalanced. By sampling and analyzing

these data, the paper attempts to find a high generalization ability model suitable for

classification, and establish a credit card fraud risk identification and prediction model, to

effectively prevent risks before credit card overdrafts and frauds happen, making it possible

for early risk warning.

The highly imbalanced data set, if not processed, shall impact the model’s learning ability.

Some scholars use clustering methods to preprocess the training data, extract representative

training examples, and reduce the noise and size, in order to improve the training accuracy of

the model. Vijay Hanagandi et al.
[2]

 established a model based on the combination of density

clustering and radial basis function network to calculate risk scores of credit card frauds. The

empirical research finds that the method of density clustering can effectively alleviate the

quantity imbalance between frauds and non-frauds, and therefore improve the classification

effect of the model. Philip K.Chan
[3]

 used a random cutting method to cut the large number of

non-fraud transaction data in the original data set into several subsets in appropriate

proportion, and put the fraudulent data into the cut subsets, based on which multiple

classifiers are built up.

However, this clustering method is to further classify based on categories, which

increases the complexity of the model structure, as well as the time and effort of model

training. Therefore, the current mainstream is to solve the problem of imbalanced data by

using random undersampling or oversampling
[4]

. The principle of random oversampling is to

increase the sample of "minority class", while the principle of random undersampling is to

https://www.kaggle.com/mlg-ulb/creditcardfraud

Page 5

remove part of the "majority class" in the original data set to balance samples. But in fact,

undersampling is likely to result in the loss of important information about the "majority

class" due to the operation of removing data, which has a great negative impact on model

training. Especially considering that fraud data are already pre-processed and incomplete,

drawbacks of this processing method are more obvious. Though the random oversampling

method is also not perfect, it is generally better than undersampling.

Page 6

II. Sample Selection and Data Screening

2.1 Sample Analysis

According to the sample data set, data are divided into 31 fields, where Time is the time

calculated from the first record, with the unit of second, and the total time is 172,792 seconds,

about 2 days. Amount is the amount of credit card consumption. Class is whether the

transaction is fraudulent or not. In the case of fraud, its value is 1 otherwise 0. Fields V1 to

V28 are the 28 principal components extracted by the principal component analysis of the

original data set. And there is no vacancy data. Through data analysis, the sample data set has

the following characteristics:

1. Imbalanced. Among 284,807 transactions, only 492 are frauds, accounting for

0.172%.

2. Due to privacy protection, these 28 fields are not given detailed explanation. Modeling

cannot be done with common business experience.

Based on the above characteristics, it is necessary to perform preprocessing and sample

screening on the original data set, to lay a foundation for training a more scientific model.

Suppose sample data of the fraudulent transaction are positive, and those of the legal

transaction are negative. Then 284,807 original sample data are divided into 492 positive

sample data and 284,315 negative sample data.

2.2 Sample Screen

2.2.1 Synthetic Minority Oversampling Technique, SMOTE

The basic idea of the SMOTE algorithm is to generate new samples based on minority

class samples and add the new ones to the data set. First, for each sample 𝑥 in the minority

class, calculate its Euclidean distances to all samples in the minority class sample set to obtain

its 𝑘 -nearest neighbor; randomly select several samples in its 𝑘 -nearest neighbor, and

assume that the selected nearest neighbor is 𝑥𝑛; finally, for each randomly selected neighbor

𝑥𝑛, randomly select one point on its line with 𝑥 as a new sample to add into the data set.

2.2.2 Particle Size Balance Analysis after Oversampling

Oversampling is performed using the SMOTE algorithm described above. 100%

negative sample data was picked up as the basis for the expansion of the positive sample size.

The result presents an increase of the data set from 284,807 to 568,630, with 284,315 positive

sample data, accounting for 50% of the total after expansion, and 284,315 negative sample

data, accounting for 50% of the total after expansion to achieve balance.

Page 7

2.2.3 Divide Samples

From the oversampled and expanded sample data, 70% are randomly selected as the

training set and the remaining 30% as the test set.

2.3 Select and Determine Indicators

The variables V1 to V28 in the data set are the 28 principal components after the

principal component analysis of the original data set. Principal component analysis eliminates

the correlation among features based on the principle of variance maximization. Using a new

set of linearly independent and mutually orthogonal features to characterize the original data

would retain the information of the original data to a large extent. However, it is not clear

whether the selected indicators will contribute to or the extend of the contribution before the

principal component rotation. It is impossible to judge the merits of the selected indicators.

Whether the 28 principal components V1 to V28 extracted after the rotation can well

distinguish the positive and negative samples is yet to be seen. Therefore, the indicators need

to be optimized.

The optimization idea is to select indicators with stronger predictive ability from the

original indicator system (28 principal components extracted by principal component

analysis). The optimization of the indicator is the feature selection process. The commonly

used method is Filter, i.e., each feature is scored according to the correlation between the

feature and the dependent variable and set the threshold or the number of features to be

chosen to select the feature. . Filter includes chi-square test, Pearson correlation coefficient,

information value, statistics principle, etc.
[5]

 It should be noted that after PCA, correlation

among V1 to V28 indicators is eliminated, but the correlation between each indicator and the

Class still remains. Therefore, the Pearson correlation coefficient method is chosen to select

indicators.

The correlation coefficient is calculated as

 (2-1)

According to this formula, the correlation between each indicator and Class is calculated,

and the result is

,

(()())cov(,) X Y

X Y

X Y X Y

E X YX Y  


   

 
 

Page 8

[Table 2-1] Correlation Coefficient between Indicators and Class

Indicator V1 V2 V3 V4 V5 V6 V7

Correlation

Coefficient
-0.44 0.51 -0.59 0.73 -0.38 -0.42 -0.5

Indicator V8 V9 V10 V11 V12 V13 V14

Correlation

Coefficient
0.083 -0.59 -0.66 0.71 -0.71 -0.056 -0.78

Indicator V15 V16 V17 V18 V19 V20 V21

Correlation

Coefficient
-0.017 -0.64 -0.6 -0.49 0.31 0.19 0.14

Indicator V22 V23 V24 V25 V26 V27 V28

Correlation

Coefficient
0.038 -0.024 -0.11 -0.0044 0.082 0.14 0.087

 [Table 2-2] Self-defined Pearson Correlation Coefficient Threshold

The stronger the correlation between each indicator and Class, the more capable the

indicator is to distinguish between positive and negative samples. 0.3 is defined as the

threshold. When the absolute value of the correlation coefficient between the indicator and

the Class is less than 0.3, the indicator is deleted. With this screening criteria, the indicator

system obtained consists of indicators V1, V2, V3, V4, V5, V6 , V7, V9, V10, V11, V12, V13,

V14, V16, V17, V18, and V19. Result is shown in Figure 2-1.

 [Figure 2-1] Chosen Indicators

Absolute value of

correlation coefficient
Correlation

0-0.09 No

0.1-0.3 Weak

0.3-0.5 Middle

0.5-1.0 Strong

Page 9

2.4 Analysis of Transaction Time

Since the unit of the Time is seconds, the data are too scattered to have statistical

significance. Thus, the unit is converted to hour and statistics for each hour after the first

transaction are gathered. The statistical result is shown in Figure 2-2. As can be seen from the

figure, in 48 hours after the first transaction, the credit card transaction volume presents

obvious periodicity, with about 24 hours as one cycle; and each cycle shows obvious

consumption peak and valley, which may be due to the fact that the credit card users rest at

night.

 [Figure 2-2] Statistics on Hourly Transactions

After the first transaction record, statistical analysis of the hourly transaction volume of

the fraudulent transaction samples and that of the legal transaction samples were conducted

respectively. Results are shown in Figure 2-3 and Figure 2-4. As can be seen from the two

figures, compared with the legal transactions, fraudulent transactions have a higher volume

during the low-traffic period of the legal transactions, indicating that the credit card thieves

are more inclined to commit crimes when card owners are at rest and when frequency of

consumption is low, in order not to attract the attention of card owners.

[Figure 2-3] Statistics on Fraudulent Transactions by Hour

Page 10

[Figure 2-4] Statistics on Legal Transactions by Hour

After the first transaction record, statistical analysis of the consumption amount of the

fraudulent transaction samples and that of the legal transaction samples were also conducted

respectively. Result is shown in Figure 2-5. As can be seen from the figure, compared with

the consumption amount of the legal transactions, the credit card fraudulent transactions have

a higher frequency of outliers during the consumption valley period. This again indicates that

fraudulent transactions are easier to occur during periods of low consumption.

[Figure 2-5] Distributions of Consumption Amount by Hour

From the above analysis, it can be inferred that fraudulent transactions are more likely to

occur during the consumption valley periods. The variable Hour plays a significant role on

judging whether the record is fraudulent or not. It should be used as an input feature of the

model. The original variable Second can be abandoned.

2.5 Analysis of Transaction Amount

Statistical analysis of characteristics of the Amount column of the fraudulent transaction

samples and that of the legal transaction samples were conducted respectively. Result is

Page 11

shown in Table 2-3, and its consumption amount distribution is shown in Figure 2-6. From

Table 2-3 and Figure 2-6, it can be seen that compared with the transaction amount of legal

samples, the amount of frauds tend to be scattered and small with 2,125.9 as the maximum

number, which indicates that the credit card thieves are more inclined to choose small

transaction amounts in order not to attract the attention of card owners.

[Table 2-3] Statistics on Transaction Amount

 [Figure 2-6 Distribution of Consumption Amount

Fraudulent Normal

Occurence 492 284,807

Average 124.1 88.3

Standard deviation 258.7 250.1

Minimum 0.0 0.0

25% 1.0 5.7

50% 9.8 22.0

75% 106.3 77.1

Maximum 2,125.9 25,691.2

Page 12

III. Evaluation Indicators

3.1 Confusion Matrix

There are many indicators for evaluating the effectiveness of the credit card fraud

detection model, but most are derived from the confusion matrix
[6]

, as shown in Figure 3-1.

 [Figure 3-1] Confusion Matrix

Meanings of different positions in the confusion matrix are explained below.

True Positives (TP): Number of fraudulent consumption behaviors with accurate classification

False Positives (FP):Number of fraudulent consumption behaviors with wrong classification

True Negatives (TN):Number of legal consumption behaviors with accurate classification

False Negatives (TN):Number of legal consumption behaviors with wrong classification

Basic performance measures derived from the confusion matrix are as follows
[7]

.

（1） Precision Rate: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃

（2） Recall Rate: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

（3） False Positive Rate: 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁

（4） F-score：𝐹𝑠𝑐𝑜𝑟𝑒 =
(1+𝛽2)×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2×𝑅𝑒𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (𝛽 shows the importance of Precision

relative to Recall. Usually 𝛽 = 1.)

（5） Error Rate: 𝐸𝑅𝑅 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
=

𝐹𝑃+𝐹𝑁

𝑃+𝑁

If a legal transaction is misjudged as a fraud, the bank will lose the profit of this

Page 13

transaction; while if a fraudulent transaction is misjudged as legal, the bank will suffer

loss. Therefore, Error Rate is also a major indicator.

（6） Accuracy: 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
=

𝑇𝑃+𝑇𝑁

𝑃+𝑁

3.2 Receiver Operating Characteristic Curve

The ROC curve offers an effective tool for comprehensive and accurate evaluation of

classification models by means of graphic illustration. It is generated by dividing the results of

the training model into several critical points, plotting the sensitivity (TPR) corresponding to

each critical point on the Y-axis, and 1-specificity (FPR) on the X-axis, and then connecting all

these critical points together. The ROC curve can also determine the optimal threshold for

detection. The cut-off point closest to the (0,1) on the curve is the best critical point. This

method can make the model's precision rate and recall rate higher, and the false positive rate

lower
[8]

.

In other words, the threshold will affect the effectiveness of the classification rules

themselves. For example, in order to improve the hit rate of prediction, if the credit card fraud

behavior has a time characteristic, the bank can appropriately shrink the classification rule by

reasonably adjusting the threshold value.

[Figure 3-2] ROC Curve

3.3 Area Under the ROC Curve

AUC (Area Under the ROC Curve) score is another indicator to measure the performance

of classification model.

Page 14

IV. Model I：Logistic Regression Model

4.1 Build Logistic Regression Model

Logistic regression is a very widely used statistical technique for identifying fraud

behavior models in binary classification problems. It is a multi-class variable analytical

method that studies and observes the relationship between the result y and some influencing

variables (𝑥1, 𝑥2, … 𝑥𝑛). Despite being a simple structure, it has a series of advantages such as

small amount of calculation, fast speed and low storage resources when dealing with complex

data systems composed of multiple indicators
[9]

.

4.1.1 Build Logistic Model

The dependent variable class is an integer variable of 0-1, so the binomial logistic

regression model is chosen.

Y = {
1 𝐹𝑟𝑎𝑢𝑑𝑢𝑙𝑒𝑛𝑡
0 𝐿𝑒𝑔𝑎𝑙

 (4-1)

Assume that the independent variable 𝑥 and the model parameter 𝜃 are defined as

vectors of n + 1:

𝑋𝑇 = [1, 𝑥1𝑥2 … 𝑥𝑛] (4-2)

𝜃𝑇 = [1, 𝜃1𝜃2 … 𝜃𝑛] (4-3)

The probability of fraudulent behavior 𝑝 in the logistic regression model can be

obtained.

𝑧 = 𝜃 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛 = 𝜃𝑇𝑋 (4-4)

𝑝 = ℎ𝜃(𝑥) =
1

1+𝑒−𝑧
 (4-5)

Where 𝑧 is actually a linear regression formula, it also reflects that the core concept of

logistic regression is derived from generalized linear regression model. This function is also

called the sigmoid function.

[Figure 4-1] Sigmoid Function Curve

Page 15

As can be seen from Figure 4-1, the output of sigmoid function is between (0, 1),

indicating that the data belongs to the probability of a certain category, and therefore the

probability of fraudulent behavior and legal behavior is

𝑃(𝑌 = 1|𝑥; 𝜃)=ℎ𝜃(𝑥) (4-6)

𝑃(𝑌 = 0|𝑥; 𝜃)=1 − ℎ𝜃(𝑥) (4-7)

On this basis, the ratio of the probability of credit card fraudulent consumption to the

probability of legal consumption, also known as the odd of experiencing an event, is

𝑅𝑜𝑑𝑑𝑠 =
𝑃(𝑌=1|𝑥;𝜃)=ℎ𝜃(𝑥)

𝑃(𝑌=0|𝑥;𝜃)=1−ℎ𝜃(𝑥)
= 𝑒𝜃+𝜃1𝑥1+𝜃2𝑥2+⋯+𝜃𝑛𝑥𝑛 (4-8)

ln(𝑅𝑜𝑑𝑑𝑠) = 𝜃 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛 = 𝑧 (4-9)

Equation 4-9 is the logit function. It can be seen that the logistic regression model is a

linear regression model with the logit function as its dependent variable.

4.1.2 Maximum Likelihood Estimation

Parameters need to be estimated based on the existing objective function. The maximum

likelihood estimation method is adopted here. Its calculation process is as follows:

Suppose there are 𝑚 observation samples with values of 𝑦1, 𝑦2, 𝑦3, … 𝑦𝑚 respectively.

According to equation 4-6, the probability of one of the observation values is

𝑃(𝑦𝑖) = 𝑝𝑖
𝑦

× (1 − 𝑝𝑖)
1−𝑦 (4-10)

Due to the independence among the observation samples, the product of each edge

distribution is used to construct the joint distribution. The likelihood function is obtained as:

𝐿(𝜃) = ∏ 𝑝(𝑥𝑖)
𝑦𝑖(1 − 𝑝(𝑥𝑖))1−𝑦𝑖

𝑚

𝑖=1

 (4-11)

The goal is to find the parameter estimate that maximizes the likelihood function, that is,

to find the parameters 𝜃0, 𝜃1, 𝜃2 … 𝜃𝑛 , such that L(w) takes the maximum value. Therefore,

Log-likelihood function

ln𝐿(𝜃) = ∑(𝑦𝑖 ln(𝑝(𝑥𝑖)) + (1 − 𝑦𝑖) ln(1 − 𝑝(𝑥𝑖)))

𝑚

𝑖=1

 (4-12)

To solve the maximum value, the partial derivative of the objective function is set to be 0.

𝜕In𝐿(𝜃𝑘)

𝜕𝜃𝑘
= ∑ 𝑥𝑖𝑘

𝑚

𝑖=1

[𝑦𝑖 − 𝑝(𝑥𝑖)] = 0

 (4-13)

Page 16

There are n + 1 partial derivative equations. The n + 1 nonlinear functions of the

n + 1 model parameters are solved using the Newton-Raphson(N-R) method. Then

𝜃𝑖+1 = 𝜃𝑖 − 𝐸̂−1g (4-14)

𝜃𝑖 and 𝜃𝑖+1 are iterative i and i + 1 estimated parameter vectors, 𝐸̂−1is the second

derivative information matrix, and 𝑔 is the first derivative vector.

4.2 Model Solution

4.2.1 Confusion Matrix

[Figure 4-2] Confusion Matrix

Use k-fold cross-validation, and at the same time conduct training and validation on

randomly-generated sub-samples repeatedly. Based on the indicators defined in Chapter 3.1,

the following evaluation values can be obtained for logistic regression model.

[Table 4-1] Result Analysis

 It can be concluded from Accuracy that the overall accuracy of the model is high,

although this is related to the fact that most of the samples are predicted to be legal. However,

as seen from the Recall of 0.985, the model achieves fairly good accuracy for fraud detection

on this slanted data set.

4.2.2 Logistic Model based on Kernel Density Estimation

(1) Credit card fraud under the Bayesian view

Suppose there are factors 𝐴 and 𝐵 that affect the model prediction result 𝑌, and the

factors 𝐴 and 𝐵 are independent of each other, then according to the Bayesian principle, the

Precision Recall F_score Accuracy Error

95.6% 98.5% 0.970 97.0% 3.00%

Page 17

following equation is obtained.

𝑃(𝑌|𝐴𝐵) =
𝑃(𝐵|𝐴𝑌)𝑃(𝑌|𝐴)

𝑃(𝐵|𝐴)
=

𝑃(𝐵|𝑌)𝑃(𝑌|𝐴)

𝑃(𝐵)

The prior probability distributions of 𝑃(𝑌)、𝑃(𝐴) and 𝑃(𝐵) can be seen from a large

amount of data.

𝑃(𝑌|𝐴𝐵) ∝ 𝑃(𝑌|𝐴)𝑃(𝐵|𝑌) (4-15)

In this paper, factor A consists of the characteristics of each principal component, and

factor B includes time and consumption amount. These two factors are relatively

independent of each other. Since the probability of credit card frauds does not change

continuously with respect to time and consumption amount, it is of little significance to

include it in the logistic model. Therefore, this paper mainly uses the principal component

feature (corresponding to factor A) to train the logistic model, and the model after training

can calculate the risk of credit card frauds 𝑃(𝑌|𝐴). On this basis, it is still necessary to

consider the role of time and consumption amount, that is, consider the probability 𝑃(𝐵|𝑌).

Since this paper is more concerned about the risk of credit card frauds, the only thing needs to

get is the distribution 𝑃(𝐵|𝑌 = 1).

Kernel density estimation is a technique to estimate the unknown probability distribution

of a random variable, based on a sample of points taken from that distribution.
[10]

 It can be

used for the estimation of the distribution 𝑃(𝐵|𝑌 = 1). However, since the joint distributions

of time 𝑇 and amount 𝐴𝑀 in the fraud samples are not continuous, the sample space is

discretized, and the probability that the fraud samples appear in the discrete sample space

𝑃(𝑇, 𝐴𝑀│𝑌 = 1) is calculated.

Based on 𝑃(𝑌 = 1|𝐴) predicted by the logistic model, joint distributions of the time

and the amount of consumption under the fraud samples are utilized to correct 𝑓(𝑇, 𝐴𝑀) =

 𝑃(𝑇, 𝐴𝑀|𝑌 = 1). Finally, the fraud risk 𝑃(𝑌 = 1|𝐴, 𝑇, 𝐴𝑀) under various factors can be

estimated.

 (2) Credit card fraud alert - threshold determination

A fixed fraud warning threshold 𝛼𝑜 is set. When 𝑃(𝑌 = 1|𝐴 = 𝑎, 𝑇 = 𝑡, 𝐴𝑀 =

 𝑎𝑚) ≥ 𝛼𝑜, the sample (𝐴 = 𝑎, 𝑇 = 𝑡, 𝐴𝑀 = 𝑎𝑚) is considered to be a fraud sample. In

practice, the logistic model obtained by training is used to complete the classification, so there

is another threshold 𝛼. When 𝑃(𝑌 = 1|𝐴) ≥ 𝛼, the sample can be determined to be a fraud.

𝛼𝑜 ∝ 𝑓(𝑇, 𝐴𝑀)𝛼

i.e.

𝛼 ∝ [𝑓(𝑇, 𝐴𝑀)]−1 (4-16)

𝛼 represents the bank's pursuit of recall rate, or the pressure on credit card frauds, while

the probability value 𝑓(𝑇, 𝐴𝑀) represents the likelihood of fraud samples in the

corresponding time period and amount. These two have inverse relationship. That is to say,

in the high incidence period of frauds, the bank should increase the intensity of the attack, i.e.,

lower the identification threshold; while in the low incidence period, the threshold 𝛼 could

Page 18

be set higher. Therefore, the threshold 𝛼 of the logistic model should be the proportional

function of [𝑓(𝑇, 𝐴𝑀)]−1.

4.2.3 Empirical Study on Kernel Density Estimation & Logistic Model

 Using kernel density estimation, the threshold is determined by Time under the condition

that the consumption amount is constant. The confusion matrix of the model is shown in

Figure 4-3, and the final F-score is 0.971.

[Figure 4-3] Confusion Matrix of Kernel Density Estimation + Logistic Model

4.3 Model Evaluation

4.3.1 Merits of Linear Logistic Regression Model

The linear logistic regression model is relatively successful in the application of credit

card scoring. There are three main advantages.

(1) The independent variable can be a continuous variable or a discrete variable, and the value

is not strictly limited.

(2) The data are not required to satisfy the assumptions that they follow normal distribution

and the covariances are the same, which expands the scope of application.

(3) The value of the dependent variable of the regression model is binary. The model

intuitively indicates whether an event can occur, the probability of occurrence, the influencing

factors, and the weight of each influencing factor.

4.3.2 Improvement on Linear Logistic Regression Model

(1) Different strategies can be adopted for threshold selection (strict, loose, multi-standard).

(2) The model can be further tested by rejecting deduction.

Page 19

V. Model II: AdaBoost Ensemble Learning Model

5.1 Model II: AdaBoost Ensemble Learning Model Based on Single-Layer

Decision Tree

After the previous data processing, this paper uses the single-layer decision tree to

classify fraudulent transaction data and legal transaction data. The single-layer decision tree

model makes decisions based on a single feature. Steps of algorithm are as follows.

(1) The features are divided according to the horizontal and vertical coordinates. The

horizontal coordinate is regarded as feature one, and the vertical coordinate as feature two,

and one of them is selected to make the decision.

(2) Based on the first step, since the outer loop is the loop of the data set feature,

classifications are made according to the first indicator, then there is a node in the first

feature point, i.e., the left and right branches of the tree. The judgment is made using

following steps.

Step 1: According to the data value, set a threshold T, in which T is equal to the

minimum eigenvalue (the minimum value of the first coordinate) + (1,2,3,4,5, …) × step

size, and the threshold changes cyclically; the one greater than threshold T is the "right

node", otherwise it is the "left node".

Step 2: Determine the error rate. Construct an all-1 column vector e. If the prediction

result is the same as the label, modify the value corresponding to initialization to 0, and

finally use a weight vector D. T × e, which is the final error rate. If the error rate is less than a

certain threshold, it is the most efficient decision tree.

Step 3: Compare the error rates of the "right node" and the "left node", and meanwhile

judge the error rate of the first feature in the large loop, or the error rate of the second feature.

Through calculation, accuracy rate of the simple classifier is found to be too low. In order

to improve it, optimization is made by AdaBoost algorithm.

AdaBoost is an iterative algorithm with a simple idea of training different classifiers

(weak classifiers) for the same training set, and then weighting these classifiers together to

form a stronger final classifier (strong classifier)
 [11]

.

Indicators obtained after data processing is used as a training set, where the value of each

field is a training sample, and the field is used as a test set. Steps are as follows.

(1) Give a training data set: (𝑥1, 𝑦1), … (𝑥𝑛, 𝑦𝑛), where 𝑦1 ∈ {−1,1} is used to represent

the classification label of the training sample, 𝑖 = 1, … , n.

Page 20

(2) First, initialize weight distribution of the training data. The same value is assigned to

the initial weight: 𝑤𝑖 =
1

𝑛
. Train the initial weight distribution 𝐷1(𝑖) of the sample

set this way.

D1(𝑖) = (𝑤1, 𝑤2, … 𝑤𝑛) = (
1

𝑛
,

1

𝑛
, …

1

𝑛
) (5-1)

(3) Iterate 𝑡 = 1, … , 𝑇

a) If the weak classifier h has the lowest error rate, it is selected as the t-th basic

classifier H𝑡. And calculate the weak classifier 𝐻𝑡: 𝑋 → {−1,1}, the error of the

weak classifier on the distribution 𝐷𝑡 is

𝑒𝑡 = 𝑃(𝐻𝑡(𝑥𝑖) ≠ 𝑦𝑖) = ∑ 𝑤𝑡𝑖𝐼(𝐻𝑡(𝑥𝑖) ≠ 𝑦𝑖)𝑛
𝑖=1 (5-2)

b) The weak classifier weight is represented by α, then the weight can be calculated

as follows.

αt =
1

2
ln (

1 − 𝑒𝑡

𝑒𝑡
)

c) Update the weight distribution of the training samples 𝐷𝑡 + 1:

𝐷𝑡+1 =
𝐷𝑡(𝑖)exp (−𝛼𝑡𝑦𝑖𝐻𝑖(𝑥𝑖))

𝑧𝑖
 (5-3)

where 𝑧𝑖 is normalized

𝑧𝑖 = 2 √𝑒𝑡(1 − 𝑒𝑡)

d) Finally, the weak classifiers are combined by the weak classifier weight αt, ie:

𝑓(𝑥)=∑ 𝛼𝑡𝐻𝑡(𝑥)𝑇
𝑡=1 (5-4)

A strong classifier is obtained using the sign function:

𝐻𝑓𝑖𝑛𝑎𝑙 = 𝑠𝑖𝑔𝑛(𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡𝐻𝑡(𝑥)𝑇
𝑡=1) (5-5)

5.2 Model Solution

The process of identifying whether there is consumer fraud in the record is mainly divided

into the following 4 steps.

(1)Preprocess data. Preprocess all the original field contents to prepare for the next step.

(2)Generate weak classifiers. Generate eight weak classifiers from the eight indicators

obtained after data preprocessing through the single-layer decision tree weak classifier.

(3)Generate a strong classifier. Generate a strong classifier through the AdaBoost iterative

algorithm.

(4)Identification: After pre-processing the consumption records that need to be identified, the

trained strong classifier is used to determine whether there are frauds. The model uses the

following process to determine whether there are frauds.

Page 21

[Figure 5-1] Algorithm Flowchart

5.3 Data Preprocessing

 The oversampled data set data_PCA_Oversampling and the undersampled data set data _

PCA _ Undersampling obtained in Chapter 2.2 are used. Among them, the 0,1 ratio of Class

in both data sets is 1. Select 70% as the training set, and the rest as the test set.

5.4 AdaBoost Iteration on Weak Classifiers

 Next, using the established AdaBoost iterative algorithm model, the given transaction

information is classified through the strong classifier obtained from weighted combination of

weak classifiers. Final result is analyzed as follows.

(1) Test analysis of oversampling results:

[Table 5-1] Test Analysis of Oversampling Results

 During the oversampling process, there are 81,804 transactions which are predicted

fraudulent and are actually frauds, 3,500 transactions which are predicted legal but are

actually fraudulent, 1,025 transactions which are predicted fraudulent but are actually legal,

and 84,252 transactions which are predicted legal and are actually legal. Result is shown in

Table 5-1.

1 0

1 81,804 3,500 85,304

0 1,025 84,252 85,277

82,829 87,752 170,581

Confusion Matrix
Predicted

Total

Actual

Total

Page 22

 [Figure 5-2] Relationship between Number of Oversampling Integrated Classifiers & Accuracy

 From Figure 5-2, when the number of integrated classifiers (i.e., the number of weak

classifiers) is one, the accuracy of prediction is in the range of 55% to 60%; when the number

of integrated classifiers is increased, although the changing rate of Accuracy varies, the

overall rate is on the rise and eventually closes to 100%.

(2) Test analysis of undersampling results:

[Table 5-2] Test Analysis of Undersampling Results

 During the undersampling process, there are 132 transactions which are predicted

fraudulent and are actually frauds, 9 transactions which are predicted legal but are actually

fraudulent, 3 transactions which are predicted fraudulent but are actually legal, and 146

transactions which are predicted legal and are actually legal. Result is shown in Table 5-2.

1 0

1 132 9 141

0 3 146 149

135 155 290

Confusion Matrix
Predicted

Total

Actual

Total

Page 23

[Figure 5-3] Relationship between Number of Undersampling Integrated Classifiers & Accuracy

 From Figure 5-3, when the number of integrated classifiers (i.e., the number of weak

classifiers) is one, the accuracy of prediction is in the range of 55% to 60%; when the number

of integrated classifiers is increased, Accuracy rate grows steadily and eventually closes to

100%.

(3) Comprehensive analysis of two data sets

Through the two methods of over-sampling and under-sampling, specific values of

evaluation indicators are calculated according to the definitions. It can be concluded from the

following table that the error rate calculated by the AdaBoost algorithm model is less than 5%,

the recall rate is close to 95%, the precision rate is close to 98%, and the F-score is over 0.95,

as shown in Table 5-3.

[Table 5-3] Evaluation Indicator Values of Oversampling & Undersampling

Through the above analysis, the accuracy of the AdaBoost algorithm model is

significantly higher than that of the original simple classifier. Therefore, the model has

strong fraud detection ability, and has a high reference value.

5.5 Improvement and Promotion

Evaluation Indicator Oversampling Undersampling

Recall Rate 95.9% 93.6%

Precision Rate 98.8% 97.8%

F_score 0.973 0.957

Error Rate 2.65% 4.14%

Accuracy Rate 97.3% 95.9%

Page 24

 Using a single-level decision tree with simple binary classifier as a weak classifier does

not necessarily distinguish a small number of fraudulent customers. For this reason, it is

necessary to find a weak classifier with better detection ability. For example, use SVM

classifier or discriminant analysis classifier to improve the capability of fraud detection. The

approach of constructing weak classifiers and iterating them into a strong classifier can be

extended to fields such as NLP processing, image processing or recommendation systems. For

example, achieve accurate detection by obtaining various feature indicators after data

processing and selecting parameters adaptively through AdaBoost iteration.

Page 25

VI. Model III: AutoEncoder Deep Learning Model based on

Tensorflow

 AutoEncoder is a multi-layer forward neural network. It is an unsupervised learning and

has important applications in data dimensionality reduction and feature extraction.

AutoEncoder can be used to initialize the weight matrix before the start of deep learning

training.

6.1 Model Solution

 In the unsupervised learning algorithm, usually use an input vector 𝑥 for encoding,

select "tanh" as the calculation method for activating function as shown in equation (6-1), and

then decode to obtain a coding result 𝑦, which produces reconstruction vector 𝑧 by the

decoder, as shown in equation (6-2). The process can be regarded as compression encoding of

the input data, representing the high-dimensional original data with a low-dimensional vector.

This way the compressed low-dimensional vector can retain the typical characteristics of the

input data, so that the original data can be restored more conveniently
[12]

.

tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 (6-1)

z = 𝑔𝜃(𝑦) = 𝑠(𝑊𝑦 + 𝑏) (6-2)

 The advantage of AutoEncoder is that its learning process is completely unsupervised.

The loss function adopted in this paper is shown in equation (6-3)

L(X, Z) = ∑ 𝐾𝐿(𝑥𝑖 ∥ 𝑧𝑖
𝑛
𝑖=1) (6-3)

 𝑥 represents a matrix of ｎ sample vectors, and 𝐾𝐿(𝑥𝑖 ∥ 𝑧𝑖) represents the divergence

between 𝑥𝑖 and 𝑧𝑖. Since the dimension of ｙ is much smaller than that of 𝑥, ｙcan learn

not only low-dimensional information but also high-dimensional information. Using the

stochastic gradient descent algorithm as the weight training algorithm, the error of the output

result can be minimized. The weight matrix is updated by the following formula (6-4), where

η is the updated step size.

𝑊 ← 𝑊 − 𝜂
𝜕𝐿(𝑋,𝑍)

𝜕𝑊
 (6-4)

 The nonlinear dimension reduction approach is to keep certain local structure or

information of the original high-dimensional data unchanged and directly find a

low-dimensional matrix 𝑦 to replace the high-dimensional matrix 𝑥. In order to prevent the

over-fitting phenomenon, the learning of the model is constrained by adopting the variable

selection method. The data is encoded sparsely to ensure the sparsity of each code in the

Page 26

algorithm. Formula (6-4) is specifically adjusted to equations (6-5) and (6-6) for calculation
[13]

.

L(x, z) = KL(x ∥ z) + Lasso(𝜃) (6-5)

Lasso(𝜃) = λ ∑ |𝜃𝑗|
|𝜃|
𝑗=0 (6-6)

6.2 Data Preprocessing

 Since AutoEncoder itself comes with dimensionality reduction, there is no need to use

PCA processed data sets. The oversampled data set data_Oversampling and the undersampled

data set data _ Undersampling for PCA in Chapter 2.2 are used. Among them, the 0,1 ratio of

Class in both data sets is 1. Ratio of training set and test set is still 7:3.

6.3 Build AutoEncoder Model

 This paper builds the AutoEncoder model based on the open source top-level framework

of Tensorflow and Keras. Set 29 neurons as input layers, and establish two coding layers and

two decoding layers, a total of four fully connected Dense layers, which are 28, 10, 10, 29

neurons respectively. L1 normalization will be used during training. Each layer uses the

"tanh" function as the activation function. During training, set 150 epochs and the batch bitch

size as 32 samples.

6.4 Load Training Model to Identify Test Data

 According to the trained model, count the prediction data and test data in undersampling

and oversampling data sets, and calculate specific values of various indicators with correct

classification. The results are shown in Table 6-1.

[Table 6-1] Values of Undersampling and Oversampling Indicators

Category Prediction Test Prediction Test

count 290 290 170581 170581

mean 14.23425 0.52069 9.73891 0.49824

std 31.66916 0.50044 19.08866 0.49999

min 0.16633 0 0.07328 0

25% 0.49985 0 0.39873 0

50% 1.04733 1 1.10841 0

75% 9.27170 1 9.11526 1

max 266.32854 1 301.32378 1

Data Set
Undersampling Oversampling

data_Undersampling data_Oversampling

Page 27

 At the same time, the identification results are analyzed according to indicators defined

previously. The ROC curve evaluation method is used to assess the classification ability and

precision of the model.

(1) Undersampling test data

 [Figure 6-1] Undersampling ROC Curve on Cumulative Risk Assessment

 The closer the ROC curve is to the upper left corner, the stronger the model’s

classification ability. The overall diagnostic accuracy can be assessed by the area under the

curve. According to the above Figure 6-1, by undersampling test, the ROC curve of the

training model achieves the expected effect, indicating that the model is effective to detect

fraud transactions with the AUC score of 0.9439.

[Figure 6-2] Comparison of Recall Rate and Precision Rate

 Comparing the Precision rate and the Recall rate, it can be concluded from Figure 6-2

that the Recall rate is negatively correlated with the Precision rate, that is, the higher the

Recall rate, the lower the Precision rate, and vice versa. If the error is greater than the

predetermined threshold, mark it as fraud, set threshold=3.5. The prediction is as follows.

Page 28

[Figure 6-3] Different Types of Reconstruction Errors for Undersampling

 The following confusion matrix is constructed for different types of reconstruction errors,

in which 135 are predicted to be fraudulent and are actually fraudulent, and 139 are predicted

to be legal and are actually legal. It can be concluded from the error classification matrix that

accuracy rate of classification is 94.482%.

[Figure 6-4] Confusion Matrix of Different Types of Reconstruction Errors for Undersampling

(2) Oversampling test data

Page 29

 [Figure 6-5] Oversampling ROC Curve of Cumulative Risk Assessment

 Through the oversampling test, according to the above figure 6-5, the ROC curve is close

to the upper left corner, indicating that the model is effective to detect fraud transactions with

the AUC score of 0.965.

[Figure 6-6] Comparison of Recall Rate and Precision Rate

 The Precision rate is compared to the Recall rate again. From Figure 6-6, it can be

concluded that the Recall Rate is negatively correlated with the Precision rate, that is, the

higher the Recall rate, the lower the Precision rate and vice versa. Set threshold = 3.6 and

mark the error greater than the threshold as fraud. The prediction is as follows.

Page 30

[Figure 6-7] Different Types of Reconstruction Errors for Oversampling

 The following confusion matrix is constructed for different types of reconstruction errors,

in which 84,301 are predicted to be fraudulent and are actually frauds, and 84,130 are

predicted to be legal and are actually legal. It can be obtained from the error classification

matrix that accuracy rate of classification is 98.74%, which is a high-quality classifier of good

reference significance.

[Figure 6-8] Confusion Matrix of Different Types of Reconstruction Errors for Oversampling

6.5 Robustness Test

 In the paragraphs above, when the Model III determines the epochs value, the assumption

is 150. Selecting the subjective factors, the paper performs robustness
[14]

 analysis to observe

the results of the model when the epochs value is different from the previously assumption.

To observe the effect, the function graph is produced to illustrate assumed epochs value and

results of oversampling and undersampling. Graph is shown below.

Page 31

 [Figure 6-9] Loss Curve of the Model - Undersampling

[Figure 6-10] Loss Curve of the Model - Oversampling

 As shown in Figure 6-10, loss of the undersampling model is basically below 0.145 after

stabilization. After 200 epochs, iterations tend to converge better. As shown in Figure 6-10,

the loss of the oversampling model is basically maintained below 0.097. After 50~200 epochs,

iterations tend to converge better. For the general purpose of the model, choose 150 as the

epoch value to achieve better convergence.

6.6 Improvement and Promotion

 Over-fitting phenomenon will affect the result of Model III. In order to overcome it, this

paper uses the absolute value function as the penalty term to compress the coefficient of the

AutoEncoder, and introduces the parameter λ. When the parameter value becomes bigger, the

penalty becomes larger, and the training result will become sparse, allowing the model to

reach a balance between fitting ability and generalization ability. This is the role of the L1

paradigm regularization. In order to help the model to be quickly sparse, noise can be added

to the input layer. And at the same time, the random gradient descent algorithm can be

Page 32

utilized to prevent the model from being affected by individualization or irrelevant input. This

can make the training model converge quickly and enhance the balance ability of pair fitting

and generalization of the model.

6.7 Model Evaluation & Comparison

 Taking the oversampled data set as an example, compare Model II and Model III,

including the basic principles, training time, F-score, error rate and so on. Results are shown

in Table 6-2.

[Table 6-2] Comparison between Model II and Model III

Take Oversampling as Example Model II Model III

Method Traditional Machine Learning Deep Learning

Training Time 276s 3123s

F_score 0.973087 0.9874

Error Rate 2.65% 1.73%

Threshold Self-adjusted Manually-adjusted

Data Loss 22.50% 0

Page 33

VII. Conclusion

 This paper carries out the research on credit card fraud risk identification model and

related early warning analysis. By using the construction of feature indicators, the credit card

fraud early warning model basing on kernel density and logistic is built up constructively. At

the same time, ensemble models based on single-layer decision tree classifier and deep neural

network are also constructed, for better generalization and preventing over-fitting or

under-fitting issues. In the process of model training, the paper focuses on handling the

imbalance of data sets by training the model with oversampling and undersampling methods.

Results show that the oversampling based training method can effectively improve the

prediction accuracy of the model and guarantee a comparatively higher Recall rate. Finally,

through the robustness analysis, it is verified that the model can be applied to solve the

problems of poor data quality, cold start of the model, etc. It also proves that the model has

high resistance to structural changes, high robustness and application values.

 However, there is still room for improvement.

(1) Regarding the data: Credit card transaction data have a very high degree of

confidentiality. The sample data in this paper are already second-hand processed after

PCA with incomplete information, which makes the model training difficult. If

original data are available, the effectiveness and robustness of the fraud risk model

are expected to be higher with more practical significance.

(2) Regarding the model: In the models proposed in this paper, the construction of

classifiers also requires training with training set. In the actual learning process,

facing the challenge of more complex and volatile transaction data, identification

accuracy can only be improved through learning from various training sets. Model

re-learning through manual intervention may not meet the requirements for rapid data

growth.

 Regarding fraud risk identification and early risk warning, there is also a lot to improve.

For example, the self-learning mechanism of the model could be improved so that it can

continuously learn and evolve according to the changes in order to avoid the decline of

recognition accuracy due to such data changes. Also considering the actual requirements of

banks, the parameters are dynamically adjusted in the model for better universality. These

issues shall be better addressed with the continuous optimization of data mining technology

and deep learning algorithms. Meanwhile, with the continuous improvement of credit card

fraud risk prevention and control system, the risk models proposed in the paper shall be more

mature and stable.

Page 34

Reference

[1] http://www.pbc.gov.cn/goutongjiaoliu/113456/113469/3607110/index.html 《2018 年第二

季度支付体系运行总体情况》;

http://www.pbc.gov.cn/zhifujiesuansi/128525/128545/128643/2884430/index.html 《2010 年

第二季度支付体系运行总体情况》.

[2] Hanagandi V, Dhar A, Buescher K. Density-based clustering and radial basis function

modeling to generate credit card fraud scores[C]// Computational Intelligence for Financial

Engineering, 1996. Proceedings of the IEEE/IAFE 1996 Conference on. IEEE, 1996:247-251.

[3] Chan P K, Stolfo S J. Toward scalable learning with non-uniform class and cost

distributions: a case study in credit card fraud detection[C]// International Conference on

Knowledge Discovery and Data Mining. AAAI Press, 1998:164-168.

[4] Jurgovsky J, Granitzer M, Ziegler K, et al. Sequence Classification for Credit-Card Fraud

Detection[J]. Expert Systems with Applications, 2018, 100.

[5] 肖琴. 基于互联网数据的个人信用风险评估的研究与应用. 2017-03-01.

[6] https://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/

[7] https://classeval.wordpress.com/introduction/basic-evaluation-measures/

[8] https://en.wikipedia.org/wiki/Receiver_operating_characteristic

[9] 冯广庆 , 杨扬 . 基于 Logistic 模型的大学生信用卡风险研究 [J]. 知识经济 ,

2011(14): 55-55.

[10] https://www.quora.com/What-is-kernel-density-estimation

[11] 黄铃. 基于 AdaBoost-LC 的微博垃圾评论识别研究[D].重庆大学,2014.

[12] 邓俊锋, 张晓龙. 基于自动编码器组合的深度学习优化方法[J]. 计算机应用, 2016,

36(03): 697-702.

[13] 刘勘,袁蕴英. 基于自动编码器的短文本特征提取及聚类研究[J].北京大学学报(自

然科学版),2015,51(02): 282-288.

[14] 吕大刚,宋鹏彦,崔双双,王闽雄. 结构鲁棒性及其评价指标[J]. 建筑结构学报, 2011,

32(11): 44-54.

http://www.pbc.gov.cn/goutongjiaoliu/113456/113469/3607110/index.html
http://www.pbc.gov.cn/zhifujiesuansi/128525/128545/128643/2884430/index.html
https://rasbt.github.io/mlxtend/user_guide/evaluate/confusion_matrix/
https://classeval.wordpress.com/introduction/basic-evaluation-measures/
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://www.quora.com/What-is-kernel-density-estimation

Page 35

Appendix

import pandas as pd

#All_Data=pd.read_csv("resampled_addtitle.csv")

All_Data=pd.read_csv("../creditcard_data.csv")

Data= All_Data

Train=Data

Target=Train['Class']

#V1=Train['V1']

Train.drop('Class',axis=1,inplace=True) #使用 pandas 包中 drop（）函数用于删除 class 列

Train.drop('Amount',axis=1,inplace=True)

Train.drop('Time',axis=1,inplace=True)

correlationall = Train.corrwith(Target)

#correlational_V1 = V1.corr(Target)

print(correlationall)

correlationall.to_csv('correlation_v28.csv')

import pandas as pd

import matplotlib.pyplot as plt

data_corr_result = pd.read_csv("correlation_v28.csv", header = None)

col0=data_corr_result.iloc[:,0]

col1=data_corr_result.iloc[:,1]

names = col0.values

datas = col1.values

datas = list(map(abs, datas))

name_larges, data_larges = [], []

for name, data in zip(names, datas):

 if data >=0.3:

 name_larges.append(name)

 data_larges.append(data)

#设置输出的图片大小

figsize = 15,9

figure, ax = plt.subplots(figsize=figsize)

plt.tick_params(labelsize=18)

plt.bar(name_larges, data_larges, facecolor='blue', width=0.8)

plt.savefig('figure_3.png')

Page 36

-*- coding: utf-8 -*-

"""

"""

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

#%matplotlib inline

import warnings

warnings.filterwarnings('ignore')

pd.set_option('display.float_format', lambda x: '%.4f' % x)

font1 = {'family' : 'Times New Roman',

 'weight' : 'normal',

 'size' : 12,

}

font2 = {'family' : 'Times New Roman',

 'weight' : 'normal',

 'size' : 18,

}

data_cr = pd.read_csv('../creditcard_data.csv')

data_cr.info()

data_cr.shape

data_cr.describe().T

data_cr.groupby('Class').size()

data_cr['Hour'] =data_cr["Time"].apply(lambda x : divmod(x, 3600)[0])

data_cr['Count'] =1

data_cr[data_cr["Class"]== 0]["Amount"].describe()

data_cr[data_cr["Class"]== 1]["Amount"].describe()

linenumber = data_cr.shape[0]

maxhour = (int)(data_cr['Hour'][linenumber-1])

data_hour1 = np.zeros(maxhour+1)

for hourindex in data_cr['Hour']:

 data_hour1[int(hourindex)] += 1

index = np.arange(maxhour+1)

Page 37

fig=plt.figure(dpi=128,figsize=(8,4))

plt.xlabel('Hour', font1)

plt.ylabel('Count', font1)

my_x_ticks = np.arange(0, maxhour+1, 1)

plt.xticks(my_x_ticks)

plt.xticks(fontsize=6, fontname = "Times New Roman")

plt.yticks(fontname = "Times New Roman")

plt.plot(index, data_hour1)

plt.savefig('linefig1.png', dpi=128)

plt.show()

data_hour2 = np.zeros(maxhour+1)

for item, hournumber in zip(data_cr["Class"], data_cr["Hour"]):

 if item == 1:

 data_hour2[int(hournumber)] += 1

index = np.arange(maxhour+1)

fig=plt.figure(dpi=128,figsize=(8,4))

plt.xlabel('Hour', font1)

plt.ylabel('Count', font1)

my_x_ticks = np.arange(0, maxhour+1, 1)

plt.xticks(my_x_ticks)

plt.xticks(fontsize=6, fontname = "Times New Roman")

plt.yticks(fontname = "Times New Roman")

plt.plot(index, data_hour2)

plt.savefig('linefig2.png', dpi=128)

plt.show()

data_hour3 = np.zeros(maxhour+1)

for item, hournumber in zip(data_cr["Class"], data_cr["Hour"]):

 if item == 0:

 data_hour3[int(hournumber)] += 1

index = np.arange(maxhour+1)

fig=plt.figure(dpi=128,figsize=(8,4))

plt.xlabel('Hour', font1)

plt.ylabel('Count', font1)

my_x_ticks = np.arange(0, maxhour+1, 1)

plt.xticks(my_x_ticks)

plt.xticks(fontsize=6, fontname = "Times New Roman")

plt.yticks(fontname = "Times New Roman")

plt.plot(index, data_hour3)

plt.savefig('linefig3.png', dpi=128)

plt.show()

Page 38

f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(15, 6))

ax1.scatter(data_cr["Hour"][data_cr["Class"] == 1], data_cr["Amount"][data_cr["Class"] ==

1],s=75,marker='s')

ax1.set_title('Fraud',font2)

ax1.set_ylabel('Amount', font2)

ax2.scatter(data_cr["Hour"][data_cr["Class"] == 0], data_cr["Amount"][data_cr["Class"] ==

0],s=75,marker='s')

ax2.set_title('Normal',font2)

ax2.set_ylabel('Amount', font2)

labels1 = ax1.get_xticklabels() + ax1.get_yticklabels()

[label.set_fontname('Times New Roman') for label in labels1]

[label.set_fontsize(14) for label in labels1]

labels2 = ax2.get_xticklabels() + ax2.get_yticklabels()

[label.set_fontname('Times New Roman') for label in labels2]

[label.set_fontsize(14) for label in labels2]

plt.xlabel('Hour', font2)

#plt.ylabel('Amount', font2)

my_x_ticks = np.arange(0, maxhour+1, 1)

plt.xticks(my_x_ticks, fontname = "Times New Roman")

plt.savefig('fig4.png', dpi=128)

plt.show()

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(15,6))

ax1.hist(data_cr["Amount"][data_cr["Class"]== 1], bins = 100,range=(0,2500),log=True)

ax1.set_title('Fraud', font2)

ax1.set_ylabel('Number of\nTransactions', font2)

ax2.hist(data_cr["Amount"][data_cr["Class"] == 0], bins = 100,log=True)

ax2.set_title('Normal', font2)

ax2.set_ylabel('Number of\nTransactions', font2)

labels1 = ax1.get_xticklabels() + ax1.get_yticklabels()

[label.set_fontname('Times New Roman') for label in labels1]

[label.set_fontsize(14) for label in labels1]

labels2 = ax2.get_xticklabels() + ax2.get_yticklabels()

Page 39

[label.set_fontname('Times New Roman') for label in labels2]

[label.set_fontsize(14) for label in labels2]

plt.xlabel('Amount', font2)

#plt.ylabel('Number of\nTransactions', font2)

plt.savefig('fig5.png', dpi=128)

plt.show()

import random

from sklearn import preprocessing

from sklearn.neighbors import NearestNeighbors

import numpy as np

import pandas as pd

import csv

class Smote:

 """

 SMOTE 过采样算法 .

 Parameters:

 k: int

 选取的近邻数目 .

 sampling_rate: int

 采样 倍数 , attention sampling_rate < k.

 newindex: int

 生成的新样本 (合成样本)的索引号 .

 """

 def __init__(self, sampling_rate=5, k=5):

 self.sampling_rate = sampling_rate

 self.k = k

 self.newindex = 0

 def fit(self, X, y=None):

 if y is not None:

 negative_X = X[y==0]

 negative_X = np.array(negative_X)

 X = X[y == 1]

 X = np.array(X)

 n_samples, n_features = X.shape

 # 初始化一个矩阵 , 用来存储合成样本

 self.synthetic = np.zeros((n_samples * self.sampling_rate, n_features))

 synth_samples, synth_features = self.synthetic.shape

 # 找出正样本集 (数据集 X) 中的每 一个样本在数据集 X 中的 k 个近邻

Page 40

 knn = NearestNeighbors(n_neighbors=self.k).fit(X)

 for i in range(len(X)):

 k_neighbors = knn.kneighbors(X[i].reshape(1,-1),return_distance=False)[0]

 # 对正样本集 (minority class samples)中每个样本 , 分别根据其 分别根据其 k 个

近邻生 成

 # sampling_rate 个新的样本

 self.synthetic_samples(X, i, k_neighbors)

 if y is not None:

 for i in range(61):

 self.synthetic=np.delete(self.synthetic, 0, axis=0)

 synth_samples, synth_features = self.synthetic.shape

return (np.concatenate((self.synthetic, X, negative_X), axis=0),

np.concatenate(([1] * (len(self.synthetic) + len(X)), y[y == 0]), axis=0))

 return np.concatenate((self.synthetic, X, negative_X), axis=0)

 return np.concatenate((self.synthetic, X), axis=0)

 # 对正样本集 (minority class samples) 中每个样本 , 分别根据其 k 个近邻生成

sampling_rate 个新的样本 个新的样本

 def synthetic_samples(self, X, i, k_neighbors):

 hang = len(self.synthetic) # 201809

 for j in range(self.sampling_rate):

 # 从 k 个近邻里面随机选择一个近邻

 neighbor = np.random.choice(k_neighbors)

 # 计算样本 X[i]X[i] X[i]与刚选择的近邻差

 diff = X[neighbor] - X[i]

 # 生成新的数据

 if self.newindex < hang : # 201809

 self.synthetic[self.newindex] = X[i] + random.random() * diff

 self.newindex += 1

newindex_g = self.newindex

------ 通过采样获取 calss 为 1 的数据

#newindex_g = 0

dataf=pd.read_csv('../creditcard_data.csv')

print(dataf.shape)

count_class = pd.value_counts(dataf['Class'],sort= True).sort_index()

print (count_class)

"""

#数据标准化

Page 41

from sklearn.preprocessing import StandardScaler #导入数据预处理模块

dataf['Amount'] = StandardScaler().fit_transform(dataf['Amount'].values.reshape(-1,1)) # -1 表示系统

自动计算得到的行， 1 表示 1 列

#dataf = dataf.drop("Time", axis=1)

"""

columnname = dataf.columns.values.tolist()

print(columnname)

data0 = []

data1 = []

data3 = []

for i, element in enumerate(dataf['Class']):

 if element == 1:

 data1.append(dataf.iloc[i, :])

 else:

 data0.append(dataf.iloc[i, :])

X = np.array(data1)

smote = Smote(sampling_rate=577, k=492)

#data1=smote.fit(X).tolist()

#data2=smote.fit(df, df['Class']).tolist()

data2=smote.fit(dataf, dataf['Class'])

#将过采样数据顺序打乱

m2 = len(data2)

index2 = np.array(range(0, m2))

np.random.shuffle(index2)

data22 =[]

for i in range(m2):

 data22.append(data2[index2[i]])

#将过采用数据保存为 csv

csvFile1 = open('data_Over_sampling.csv','w', newline='') # 设置 newline，否则两行之间会 ，否则

两行之间会 空一行

writer = csv.writer(csvFile1)

writer.writerow(columnname)

for i in range(m2):

 writer.writerow(data22[i])

csvFile1.close() #data_Over_sampling.csv

print('data_Over_sampling.csv saved')

Page 42

m0 = len(data0)

m1 = len(data1)

index1 = np.random.randint(m0,size=m1) # np.random.randint(2,size=5)#array([0, 1, 1, 0, 1])

for i in range(m1):

 index = index1[i]

 data3.append(data0[index])

data5 =np.concatenate((data3, data1), axis=0)

#将下采样数据顺序打乱

m5 = len(data5)

index5 = np.array(range(0, m1*2))

np.random.shuffle(index5)

data55 =[]

for i in range(m5):

 data55.append(data5[index5[i]])

#将下采样数据保存为 csv

csvFile2 = open('data_Lower_sampling.csv','w', newline='')

writer = csv.writer(csvFile2)

writer.writerow(columnname)

for i in range(m5):

 writer.writerow(data55[i])

csvFile2.close() #data_Lower_sampling.csv

print('data_Lower_sampling.csv saved')

-*- coding: utf-8 -*-

"""

"""

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.model_selection import StratifiedKFold

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix

import random

import warnings

Page 43

from pylab import mpl

warnings.filterwarnings('ignore')

mpl.rcParams['font.sans-serif'] = ['SimHei']

def readdata():

 alls =pd.read_csv('data_Over_sampling_LR.csv')

 x=alls.drop('Class',axis=1)

 y=alls['Class']

 x=x.values

 y=y.values

 return x,y

X,y=readdata()

lrn = LogisticRegression()

N = 5

N_iter = 2

for it in range(N_iter):

 skf = StratifiedKFold(n_splits = N, shuffle = True)

 for train_index, test_index in skf.split(X, y):

 X_train, y_train = X[train_index], y[train_index]

 X_test, y_test = X[test_index], y[test_index]

 lrn.fit(X_train, y_train)

 y_pred=lrn.predict(X_test)

 y_prob = lrn.predict_proba(X_test)[:,lrn.classes_[1]]

classes=['0' , '1']

y_pred = lrn.predict(X_test)

cm = confusion_matrix(y_test, y_pred)

if lrn.classes_[0] == 1:

 cm = np.array([[cm[1,1], cm[1,0]], [cm[0,1], cm [0,0]]])

plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)

tick_marks = np.arange(len(classes))

plt.xticks(tick_marks, classes, rotation=45)

plt.yticks(tick_marks, classes)

thresh = cm.max() / 2.

import itertools

for i , j in itertools .product(range(cm.shape[0]), range(cm.shape[1])):

 plt .text(j , i , cm[i, j],

 horizontalalignment="center",

 color="white" if cm[i, j] > thresh else "black")

plt .tight_layout()

Page 44

plt .ylabel('Actual Class') #真实类别

plt .xlabel('Predicted Class') #预测类别

plt .show()

-*- coding: utf-8 -*-

"""

"""

import random

from sklearn import preprocessing

from sklearn.neighbors import NearestNeighbors

import numpy as np

import pandas as pd

import csv

class Smote:

 """

 SMOTE 过采样算法 .

 Parameters:

 k: int

 选取的近邻数目 .

 sampling_rate: int

 采样 倍数 , attention sampling_rate < k.

 newindex: int

 生成的新样本 (合成样本)的索引号 .

 """

 def __init__(self, sampling_rate=5, k=5):

 self.sampling_rate = sampling_rate

 self.k = k

 self.newindex = 0

 def fit(self, X, y=None):

 if y is not None:

 negative_X = X[y==0]

 negative_X = np.array(negative_X)

 X = X[y == 1]

 X = np.array(X)

 n_samples, n_features = X.shape

 # 初始化一个矩阵 , 用来存储合成样本

 self.synthetic = np.zeros((n_samples * self.sampling_rate, n_features))

 synth_samples, synth_features = self.synthetic.shape

Page 45

 # 找出正样本集 (数据集 X) 中的每 一个样本在数据集 X 中的 k 个近邻

 knn = NearestNeighbors(n_neighbors=self.k).fit(X)

 for i in range(len(X)):

 k_neighbors = knn.kneighbors(X[i].reshape(1,-1),return_distance=False)[0]

 # 对正样本集 (minority class samples)中每个样本 , 分别根据其 分别根据其 k 个

近邻生 成

 # sampling_rate 个新的样本

 self.synthetic_samples(X, i, k_neighbors)

 if y is not None:

 for i in range(61):

 self.synthetic=np.delete(self.synthetic, 0, axis=0)

 synth_samples, synth_features = self.synthetic.shape

return (np.concatenate((self.synthetic, X, negative_X), axis=0),

np.concatenate(([1] * (len(self.synthetic) + len(X)), y[y == 0]), axis=0))

 return np.concatenate((self.synthetic, X, negative_X), axis=0)

 return np.concatenate((self.synthetic, X), axis=0)

 # 对正样本集 (minority class samples) 中每个样本 , 分别根据其 k 个近邻生成

sampling_rate 个新的样本 个新的样本

 def synthetic_samples(self, X, i, k_neighbors):

 hang = len(self.synthetic) # 201809

 for j in range(self.sampling_rate):

 # 从 k 个近邻里面随机选择一个近邻

 neighbor = np.random.choice(k_neighbors)

 # 计算样本 X[i]X[i] X[i]与刚选择的近邻差

 diff = X[neighbor] - X[i]

 # 生成新的数据

 if self.newindex < hang : # 201809

 self.synthetic[self.newindex] = X[i] + random.random() * diff

 self.newindex += 1

newindex_g = self.newindex

------ 通过采样获取 calss 为 1 的数据

#newindex_g = 0

dataf=pd.read_csv('../creditcard_data.csv')

#数据标准化

print(dataf.shape)

count_class = pd.value_counts(dataf['Class'],sort= True).sort_index()

print (count_class)

from sklearn.preprocessing import StandardScaler #导入数据预处理模块

Page 46

dataf['Amount'] = StandardScaler().fit_transform(dataf['Amount'].values.reshape(-1,1)) # -1 表示系统

自动计算得到的行， 1 表示 1 列

dataf = dataf.drop("Time", axis=1)

columnname = dataf.columns.values.tolist()

print(columnname)

data0 = []

data1 = []

data3 = [] # class =0 random samnple from data0

for i, element in enumerate(dataf['Class']):

 if element == 1:

 data1.append(dataf.iloc[i, :])

 else:

 data0.append(dataf.iloc[i, :])

X = np.array(data1)

smote = Smote(sampling_rate=577, k=492)

data2=smote.fit(dataf, dataf['Class'])

#将过采样数据顺序打乱

m2 = len(data2)

index2 = np.array(range(0, m2))

np.random.shuffle(index2)

data22 =[]

for i in range(m2):

 data22.append(data2[index2[i]])

#将过采用数据保存为 csv

csvFile1 = open('data_Over_sampling.csv','w', newline='') # 设置 newline，否则两行之间会 ，否则

两行之间会 空一行

writer = csv.writer(csvFile1)

writer.writerow(columnname)

for i in range(m2):

 writer.writerow(data22[i])

csvFile1.close() #data_Over_sampling.csv

print('data_Over_sampling.csv saved')

#随机选取 492 个 class=0 的数据项

m0 = len(data0)

Page 47

m1 = len(data1)

index1 = np.random.randint(m0,size=m1) # np.random.randint(2,size=5)#array([0, 1, 1, 0, 1])

for i in range(m1):

 index = index1[i]

 data3.append(data0[index])

#下采样数据：将 class=1 和 class=0 合并到一个数组中， 总数据项 966 个

data5 =np.concatenate((data3, data1), axis=0) # size 492*2

#将下采样数据顺序打乱

m5 = len(data5)

index5 = np.array(range(0, m1*2))

np.random.shuffle(index5)

data55 =[]

for i in range(m5):

 data55.append(data5[index5[i]])

#将下采样数据保存为 csv

csvFile2 = open('data_Lower_sampling.csv','w', newline='')

writer = csv.writer(csvFile2)

writer.writerow(columnname)

for i in range(m5):

 writer.writerow(data55[i])

csvFile2.close() #data_Lower_sampling.csv

print('data_Lower_sampling.csv saved')

-*- coding: utf-8 -*-

"""

"""

#模型 3

import pylab

import numpy as np

import pickle

import matplotlib.pyplot as plt

#%matplotlib inline

from scipy import stats

import tensorflow as tf

import seaborn as sns

from pylab import rcParams

from sklearn.model_selection import train_test_split

Page 48

from keras.layers import Input,Dense

from keras.models import Model,load_model

from keras.callbacks import ModelCheckpoint,TensorBoard

from keras import regularizers

import pandas as pd

from pylab import mpl

import time

mpl.rcParams['font.sans-serif'] = ['KaiTi'] # 指定默认字体

mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号 '-'显示为方块的问题

#data =pd.read_csv('creditcard_data.csv')

data =pd.read_csv('data_Lower_sampling.csv')

#查看数据格式

print(df.head())

#查看数据结构

print(df.shape)

count_classes = pd.value_counts(data['Class'],sort = True).sort_index()

count_classes.plot(kind='bar',rot=0)

plt.title('class 的分布情况')

plt.xlabel('Class')

plt.ylabel('数目')

plt.show()

RANDOM_SEED=42

x_train,x_test=train_test_split(data,test_size=0.3,random_state=RANDOM_SEED)

y_train =x_train['Class']

#x_train=x_train[x_train.Class==0]

x_train=x_train.drop(['Class'],axis=1)

y_test=x_test['Class']

x_test=x_test.drop(['Class'],axis=1)

x_train=x_train.values

x_test=x_test.values

y_train=y_train.values

y_test=y_test.values

print(x_train.shape)

input_dim=x_train.shape[1]

encoding_dim=14

input_layer=Input(shape=(input_dim ,))

encoder=Dense(encoding_dim,activation='tanh',activity_regularizer=regularizers.l1(10e-5))(input_lay

er)

encoder=Dense(int(encoding_dim/2),activation='relu')(encoder)

Page 49

decoder=Dense(int(encoding_dim/2),activation='tanh')(encoder)

decoder=Dense(input_dim,activation='relu')(decoder)

autoencoder=Model(inputs=input_layer,outputs=decoder)

nb_epoch=150

batch_size=32

autoencoder.compile(optimizer='adam',loss='mean_squared_error',metrics=['accuracy'])

checkpointer=ModelCheckpoint(filepath='data_Lower_sampling.h5',verbose=0,save_best_only=True)

tensorboard=TensorBoard(log_dir='.logs',histogram_freq=0,write_graph=True,write_images=True)

history=autoencoder.fit(x_train,

x_train,epochs=nb_epoch,batch_size=batch_size,shuffle=True,validation_data=(x_test,x_test),verbose

=1,callbacks=[checkpointer,tensorboard]).history

print(history)

plt.plot(history['loss'])

plt.plot(history['val_loss'])

plt.title('Loss Curve of the Model') #型的损失曲线

plt.ylabel('Loss Rate（%）') #丢失率

plt.xlabel('Epoch') #迭代训练传播次数

plt.legend(['train','test'],loc='upper right')

plt.show()

data_Over sampling 过采样模型

data_Lower sampling 下采样模型

autoencoder=load_model('data_Lower_sampling.h5') # 201809

#autoencoder=load_model('creditcard_data.h5') # 201809

prediction=autoencoder.predict(x_test)

mse=np.mean(np.power(x_test -prediction,2),axis=1)

error_df=pd.DataFrame({'reconstruction_error':mse,'true_class':y_test})

print(error_df.describe())

from sklearn.metrics import (confusion_matrix,precision_recall_curve,auc,roc_curve,

recall_score,classification_report,precision_recall_fscore_support)

fpr,tpr,thresholds=roc_curve(error_df.true_class,error_df.reconstruction_error)

ROC 曲线

roc_auc = auc(fpr, tpr)

plt.title('ROC Curve') #ROC 曲线

plt.plot(fpr, tpr, label='AUC = %0.4f'% roc_auc)

plt.legend(loc='lower right')

plt.plot([0,1],[0,1],'r -- ')

plt.xlim([-0.001, 1])

plt.ylim([0, 1.001])

plt.ylabel('True Positive Rate ') #真阳性率

plt.xlabel('False Positive Rate ') #假阳性率

plt.show()

Page 50

#精确率和召回率

precision, recall, th = precision_recall_curve(error_df.true_class, error_df.reconstruction_error)

plt.plot(recall, precision, 'b', label='Precision-Recall curve')

plt.title('Recall vs Precision')

plt.xlabel('Recall ') #召回率

plt.ylabel('Precision ') #精准率

plt.show()

#准确率

plt.plot(th, precision[1:], 'b', label='阈值-精准率曲线')

plt.title('不同阈值的精准率')

plt.xlabel('阈值')

plt.ylabel('精准率')

plt.show()

#召回率 f

plt.plot(th, recall[1:], 'b', label='阈值-召回率曲线')

plt.title('不同阈值的召回率')

plt.xlabel('阈值')

plt.ylabel('召回率')

plt.show()

threshold=2.9

y_pred = [1 if e > threshold else 0 for e in error_df.reconstruction_error.values]

conf_matrix = confusion_matrix(error_df.true_class, y_pred)

groups = error_df.groupby('true_class')

fig, ax = plt.subplots()

for name, group in groups:

 ax.plot(group.index, group.reconstruction_error, marker='o', ms=3.5, linestyle='', label= 'Legal ' if

name == 1 else 'Fraudulent') #正常交易 欺诈交易

ax.hlines(threshold, ax.get_xlim()[0], ax.get_xlim()[1], colors='r', zorder=100, label='Threshold') #阈

值

ax.legend()

#plt.title('不同类别的重建误差')

plt.ylabel('Reconstruction Errors') #重建误差

plt.xlabel('Data Point Index') #数据点索引

plt.show()

LABELS=['Legal','Fraudulent'] #'正常','欺诈'

plt.figure()

sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt='d')

plt.title('Confusion Matrix') #混淆矩阵

plt.ylabel('Actual Class') #实际的分类

plt.xlabel('Predicted Class') #预测的分类

plt.show()

Page 51

TP=0

FN=0

FP=0

TN=0

f1data=[]

thresho=[]

for i in range(0,500):

 threshold = i*0.01

 thresho.append(threshold)

 y_pred = [1 if e > threshold else 0 for e in error_df.reconstruction_error.values]

 conf_matrix = confusion_matrix(error_df.true_class, y_pred)

 for T, P in zip(y_pred, y_test):

 if T == 1 and P == 1:

 TN += 1

 if T == 1 and P == 0:

 FN += 1

 if T == 0 and P == 1:

 FP += 1

 if T == 0 and P == 0:

 TP += 1

 #

 # print('TP' + str(TP))

 # print('FN' + str(FN))

 # print('FP' + str(FP))

 # print('TN' + str(TN))

 p = (TP + TN) / (TP + FN + FP + TN)

 print(str(p))

 f1data.append(p)

plt.xlabel("阈值") # X 轴的文字

plt.ylabel("F1") # Y 轴的文字

plt.title("阈值 -F1 曲线") # 图表的标题

plt.plot(thresho, f1data)

plt.show() # 显示图片

matlab code:

AdaBoostTestmain.m

 csv_data = csvread('creditcard.csv',1,0);

 downsampling(csv_data, 'downsampling_data.csv');

 csv_alldata = csvread('downsampling_data.csv');

 fastPCA(csv_alldata(:,1:30),csv_alldata(:,31) ,8);

 AdaBoostTest();

Page 52

AdaBoostTest.m

function [same] = AdaBoostTest()

 fprintf(' 读取数据中 ... \n');

 csv_data = csvread('下采样 8 个指标乱序.csv', 1, 0);

 fprintf('读取完成.\n');

 same = zeros(8,1);

 len = fix(length(csv_data(:,1)));

 train_len = fix(len* 0.7);

 train_data = csv_data(1:train_len,1:8);

 train_label = csv_data(1:train_len,9);

 test_data = csv_data(train_len+1:len,1:8);

 test_label = csv_data(train_len+1:len,9);

 fprintf('下采样\n')

 for i=1:8

 %length(train_data)

 ens = fitensemble(train_data(:,1:i),train_label,'AdaBoostM1' ,100,'tree','type','classification');

 predict_label = predict(ens, test_data(:,1:i));

 TP = 0;

 FN = 0;

 FP = 0;

 TN = 0;

 for i2=1:length(predict_label)

 if test_label(i2,1) == 1 && predict_label(i2,1) == 1

 TP = TP+ 1;

 end

 if test_label(i2,1) == 1 && predict_label(i2,1) == 0

 FN = FN + 1;

 end

 if test_label(i2,1) == 0 && predict_label(i2,1) == 1

 FP = FP + 1;

 end

 if test_label(i2,1) == 0 && predict_label(i2,1) == 0

 TN = TN + 1;

 end

 if test_label(i2,1) == predict_label(i2,1)

 same(i,1) = same(i,1) + 1;

 end

 end

 same(i,1)=same(i,1)/length(predict_label)*100;

 fprintf('%d 列： \n',i);

 fprintf('TP: %f FN: %f\nFP: %f TN: %f\n',TP,FN,FP,TN);

 P = TP / (TP+ FP);

Page 53

 R = TP / (TP+ FN);

 fprintf('P: %f R:%f\nF1: %f\n',P,R,2*P*R/(P+R));

 fprintf('准确率 : %f %%\n',same(i,1));

 end

end

downsampling.m

function [] = downsampling(data, resultFilename)

 result = [];

 randomNUM = [];

 len = length(data(:,1));

 for i=1:483

 while(1)

 num = fix(rand(1) * len) + 1;

 fprintf('%d\n',num)

 if any(randomNUM==num)==0

 break

 end

 end

 result = [result;data(num,:)];

 csvwrite(resultFilename,result)

 end

end

fastPCA.m

function pcaA = fastPCA(A,B, k)

[r c] = size(A);

meanVec = mean(A);

Z = (A-repmat(meanVec, r, 1));

covMatT = Z * Z';

[V D] = eigs(covMatT, k);

V = Z' * V;

for i=1:k

 V(:,i)=V(:,i)/norm(V(:,i));

end

pcaA = Z * V;

pcaA1=[pcaA,B]

csvwrite('下采样 8 个指标乱序.csv',pcaA1)

Page 54

Acknowledgement

Nanjing Foreign Language School

Teacher Qing Yan

My Parents

People who helped me during this research project

Biography

Zhongnian Tao, student in Senior 3 (1) Advanced Science Class in Nanjing Foreign Language

School.

· National Finalist (Top 15) –2017 Dongrun-Yau Science Award (Computer)

· First Prize – National Olympiad in Informatics in Provinces (Senior Group) from Grade

8 to Grade 11 consecutively;

· Champion, Gold Medal – National Olympiad in Informatics 2017 Winter Camp;

· Gold Medal – The 29
th

 International Olympiad in Informatics China Team Selection

Competition;

· Silver Medal – The 11
th

 Asia Pacific Informatics Olympiad;

· Jiangsu Provincial First Prize – 2017 National Olympiad in Mathematics in Provinces;

· Global Top 1% – American Mathematics Competition 12;

· Student of 2018 China Talent Program administered by China Association for Science

and Technology and China Ministry of Education;

· Student of 2018 Sakura Science Program, a Japan-Asian Youth Exchange Program.

Page 55

