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A Study on Constructing Credit Card Fraud Detection Models  

Abstract 

This paper intends to conduct an in-depth research on risk warnings of credit card frauds. 

Logistic regression classification forecasting model is first constructed with desensitized data 

set of credit card transactions. Kernel density estimation is utilized to determine model 

thresholds, with full consideration of fraud characteristics (time, amount) distribution. Good 

performance of logistic regression classification forecasting model on data extracted from 

principal component analysis proves that desensitized data can be effectively applied to data 

analysis projects, overcoming security concerns of data analysis. For the purpose of thorough 

analysis and comparison, AdaBoost ensemble learning model and AutoEncoder model are 

further devised based on two methods from traditional machine learning and deep learning, in 

order to achieve accurate identification of fraudulent transactions. Comparisons on predicative 

ability are made between undersampling and SMOTE oversampling approaches to select the 

optimal way of dealing with imbalanced data set. 
 

Considering the serious imbalanced feature of data set which has only 0.17% of frauds, 

this paper enhances the forecasting capability of classification model using SMOTE algorithm 

to conduct oversampling on fraudulent transaction data set. The classification forecasting 

model is then divided into training set and validation set, with a ratio of 7:3, using k-fold cross 

validation. Grid search tuning parameters are utilized to optimize the model. Model 

evaluation results show that the recall rate of optimized logistic regression classification 

forecasting model reaches as high as 98.5%, indicating a strong predictive ability. 
 

The paper then proposes a framework algorithm based on the AdaBoost ensemble 

learning model of single-layer decision tree classifier. After randomly selecting 70% as 

training set and 30% as test set from the processed data, 8 weak classifiers are set up for 

training data using single-layer decision tree algorithm, to perform adaptive parameter 

learning through iterative algorithm. Based on various defined indicators, with regard to the 

test data of undersampled data set, the recall rate is 93.6%, precision rate is 97.8%, F-score is 

0.957, and error rate is 4.13%; with regard to the test data of oversampled data set, the recall 

rate is 95.9%, precision rate is 98.8%, F-score is 0.973, and error rate is 2.65%. Therefore, the 

results demonstrate that the proposed model has strong fraud detection capability. For ease of 

comparison, AutoEncoder model is built up based on Tensorflow and Keras open source 

top-level frame work. The model establishes 29 neurons as input layer, uses 4 hidden layers as 

encoder and decoder, iteratively updates its parameters using BP algorithm, and at the same 

time uses L1 paradigm regularization to help balancing its fitting ability and generalization 

ability. Results of the undersampled data set test data are: AUC (Area Under Curve) score is 

0.9439, the accuracy of classification is 94.5%; results of the oversampled data set test data 

are: AUC score is 0.965, and the accuracy of the classification is 98.7%.  

 

 

Key Words: Kernel Density, Logistic Regression, AdaBoost Ensemble Learning Model, 

AutoEncoder Model 
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I. Background and Problem Restatement 

    As a means of payment for non-cash transactions, credit cards have become the most 

convenient and most popular credit service with attractive features such as longer interest-free 

period, fast and simple procedure. However, the continuous development of the Internet and 

information technology has also made the risk of credit card business increasingly apparent. 

Compared with other credit methods, credit cards have higher risks with the characteristics of 

no mortgage, higher overdue interest rate, technology dependence, being vulnerable to the 

economic cycle and easy to cause vicious circle. At present, due to the leakage of customer 

information, credit card fraud has become a serious and growing problem. With the economic 

downturn, risks of credit card business continue to rise. The Overall Performance of the 

Payment Systems in the Second Quarter of 2018 released by the People’s Bank of China 

shows that the amount of credit cards with more than half-a-year overdue was 75.667 billion 

yuan, a year-on-year increase of 6.35%. Compared with the 7.302 billion yuan in the same 

period of 2010, there was a growth of nearly ten times over the past eight years 
[1]

. Increasing 

number of credit card frauds and malicious overdrafts has caused the industry to attach great 

importance to credit card risk management and early warning mechanisms. 

Data set of this paper comes from https://www.kaggle.com/mlg-ulb/creditcardfraud. For 

the total number of 284,807 credit card transactions, data are pre-processed after PCA 

transformation, with no clear meaning and are highly imbalanced. By sampling and analyzing 

these data, the paper attempts to find a high generalization ability model suitable for 

classification, and establish a credit card fraud risk identification and prediction model, to 

effectively prevent risks before credit card overdrafts and frauds happen, making it possible 

for early risk warning. 

The highly imbalanced data set, if not processed, shall impact the model’s learning ability. 

Some scholars use clustering methods to preprocess the training data, extract representative 

training examples, and reduce the noise and size, in order to improve the training accuracy of 

the model. Vijay Hanagandi et al. 
[2]

 established a model based on the combination of density 

clustering and radial basis function network to calculate risk scores of credit card frauds. The 

empirical research finds that the method of density clustering can effectively alleviate the 

quantity imbalance between frauds and non-frauds, and therefore improve the classification 

effect of the model. Philip K.Chan 
[3]

 used a random cutting method to cut the large number of 

non-fraud transaction data in the original data set into several subsets in appropriate 

proportion, and put the fraudulent data into the cut subsets, based on which multiple 

classifiers are built up. 

However, this clustering method is to further classify based on categories, which 

increases the complexity of the model structure, as well as the time and effort of model 

training. Therefore, the current mainstream is to solve the problem of imbalanced data by 

using random undersampling or oversampling 
[4]

. The principle of random oversampling is to 

increase the sample of "minority class", while the principle of random undersampling is to 

https://www.kaggle.com/mlg-ulb/creditcardfraud
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remove part of the "majority class" in the original data set to balance samples. But in fact, 

undersampling is likely to result in the loss of important information about the "majority 

class" due to the operation of removing data, which has a great negative impact on model 

training. Especially considering that fraud data are already pre-processed and incomplete, 

drawbacks of this processing method are more obvious. Though the random oversampling 

method is also not perfect, it is generally better than undersampling. 
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II. Sample Selection and Data Screening 

2.1 Sample Analysis 

According to the sample data set, data are divided into 31 fields, where Time is the time 

calculated from the first record, with the unit of second, and the total time is 172,792 seconds, 

about 2 days. Amount is the amount of credit card consumption. Class is whether the 

transaction is fraudulent or not. In the case of fraud, its value is 1 otherwise 0. Fields V1 to 

V28 are the 28 principal components extracted by the principal component analysis of the 

original data set. And there is no vacancy data. Through data analysis, the sample data set has 

the following characteristics: 

1. Imbalanced. Among 284,807 transactions, only 492 are frauds, accounting for 

0.172%.  

2. Due to privacy protection, these 28 fields are not given detailed explanation. Modeling 

cannot be done with common business experience. 

Based on the above characteristics, it is necessary to perform preprocessing and sample 

screening on the original data set, to lay a foundation for training a more scientific model. 

Suppose sample data of the fraudulent transaction are positive, and those of the legal 

transaction are negative. Then 284,807 original sample data are divided into 492 positive 

sample data and 284,315 negative sample data. 

2.2 Sample Screen 

2.2.1 Synthetic Minority Oversampling Technique, SMOTE 

The basic idea of the SMOTE algorithm is to generate new samples based on minority 

class samples and add the new ones to the data set. First, for each sample 𝑥 in the minority 

class, calculate its Euclidean distances to all samples in the minority class sample set to obtain 

its 𝑘 -nearest neighbor; randomly select several samples in its 𝑘 -nearest neighbor, and 

assume that the selected nearest neighbor is 𝑥𝑛; finally, for each randomly selected neighbor 

𝑥𝑛, randomly select one point on its line with 𝑥 as a new sample to add into the data set. 

2.2.2 Particle Size Balance Analysis after Oversampling 

Oversampling is performed using the SMOTE algorithm described above. 100% 

negative sample data was picked up as the basis for the expansion of the positive sample size. 

The result presents an increase of the data set from 284,807 to 568,630, with 284,315 positive 

sample data, accounting for 50% of the total after expansion, and 284,315 negative sample 

data, accounting for 50% of the total after expansion to achieve balance. 
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2.2.3 Divide Samples 

From the oversampled and expanded sample data, 70% are randomly selected as the 

training set and the remaining 30% as the test set. 

2.3 Select and Determine Indicators 

The variables V1 to V28 in the data set are the 28 principal components after the 

principal component analysis of the original data set. Principal component analysis eliminates 

the correlation among features based on the principle of variance maximization. Using a new 

set of linearly independent and mutually orthogonal features to characterize the original data 

would retain the information of the original data to a large extent.  However, it is not clear 

whether the selected indicators will contribute to or the extend of the contribution before the 

principal component rotation. It is impossible to judge the merits of the selected indicators. 

Whether the 28 principal components V1 to V28 extracted after the rotation can well 

distinguish the positive and negative samples is yet to be seen. Therefore, the indicators need 

to be optimized. 

The optimization idea is to select indicators with stronger predictive ability from the 

original indicator system (28 principal components extracted by principal component 

analysis). The optimization of the indicator is the feature selection process. The commonly 

used method is Filter, i.e., each feature is scored according to the correlation between the 

feature and the dependent variable and set the threshold or the number of features to be 

chosen to select the feature. . Filter includes chi-square test, Pearson correlation coefficient, 

information value, statistics principle, etc. 
[5]

 It should be noted that after PCA, correlation 

among V1 to V28 indicators is eliminated, but the correlation between each indicator and the 

Class still remains. Therefore, the Pearson correlation coefficient method is chosen to select 

indicators. 

The correlation coefficient is calculated as 

                   (2-1) 

According to this formula, the correlation between each indicator and Class is calculated, 

and the result is 
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[Table 2-1] Correlation Coefficient between Indicators and Class 

Indicator V1 V2 V3 V4 V5 V6 V7 

Correlation 

Coefficient 
-0.44 0.51 -0.59 0.73 -0.38 -0.42 -0.5 

Indicator V8 V9 V10 V11 V12 V13 V14 

Correlation 

Coefficient 
0.083 -0.59 -0.66 0.71 -0.71 -0.056 -0.78 

Indicator V15 V16 V17 V18 V19 V20 V21 

Correlation 

Coefficient 
-0.017 -0.64 -0.6 -0.49 0.31 0.19 0.14 

Indicator V22 V23 V24 V25 V26 V27 V28 

Correlation 

Coefficient 
0.038 -0.024 -0.11 -0.0044 0.082 0.14 0.087 

 [Table 2-2] Self-defined Pearson Correlation Coefficient Threshold 

 

The stronger the correlation between each indicator and Class, the more capable the 

indicator is to distinguish between positive and negative samples. 0.3 is defined as the 

threshold.  When the absolute value of the correlation coefficient between the indicator and 

the Class is less than 0.3, the indicator is deleted. With this screening criteria, the indicator 

system obtained consists of indicators V1, V2, V3, V4, V5, V6 , V7, V9, V10, V11, V12, V13, 

V14, V16, V17, V18, and V19. Result is shown in Figure 2-1. 

  

 [Figure 2-1] Chosen Indicators 

 

Absolute value of

correlation coefficient
Correlation

0-0.09 No

0.1-0.3 Weak

0.3-0.5 Middle

0.5-1.0 Strong
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2.4 Analysis of Transaction Time 

Since the unit of the Time is seconds, the data are too scattered to have statistical 

significance. Thus, the unit is converted to hour and statistics for each hour after the first 

transaction are gathered. The statistical result is shown in Figure 2-2. As can be seen from the 

figure, in 48 hours after the first transaction, the credit card transaction volume presents 

obvious periodicity, with about 24 hours as one cycle; and each cycle shows obvious 

consumption peak and valley, which may be due to the fact that the credit card users rest at 

night. 

 

 [Figure 2-2] Statistics on Hourly Transactions 

After the first transaction record, statistical analysis of the hourly transaction volume of 

the fraudulent transaction samples and that of the legal transaction samples were conducted 

respectively. Results are shown in Figure 2-3 and Figure 2-4. As can be seen from the two 

figures, compared with the legal transactions, fraudulent transactions have a higher volume 

during the low-traffic period of the legal transactions, indicating that the credit card thieves 

are more inclined to commit crimes when card owners are at rest and when frequency of 

consumption is low, in order not to attract the attention of card owners. 

 
 

[Figure 2-3] Statistics on Fraudulent Transactions by Hour 
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[Figure 2-4] Statistics on Legal Transactions by Hour 

After the first transaction record, statistical analysis of the consumption amount of the 

fraudulent transaction samples and that of the legal transaction samples were also conducted 

respectively.  Result is shown in Figure 2-5. As can be seen from the figure, compared with 

the consumption amount of the legal transactions, the credit card fraudulent transactions have 

a higher frequency of outliers during the consumption valley period. This again indicates that 

fraudulent transactions are easier to occur during periods of low consumption. 

 

[Figure 2-5] Distributions of Consumption Amount by Hour 

From the above analysis, it can be inferred that fraudulent transactions are more likely to 

occur during the consumption valley periods. The variable Hour plays a significant role on 

judging whether the record is fraudulent or not. It should be used as an input feature of the 

model. The original variable Second can be abandoned. 

2.5 Analysis of Transaction Amount 

Statistical analysis of characteristics of the Amount column of the fraudulent transaction 

samples and that of the legal transaction samples were conducted respectively. Result is 
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shown in Table 2-3, and its consumption amount distribution is shown in Figure 2-6. From 

Table 2-3 and Figure 2-6, it can be seen that compared with the transaction amount of legal 

samples, the amount of frauds tend to be scattered and small with 2,125.9 as the maximum 

number, which indicates that the credit card thieves are more inclined to choose small 

transaction amounts in order not to attract the attention of card owners. 

[Table 2-3] Statistics on Transaction Amount 

 

 

 [Figure 2-6 Distribution of Consumption Amount 

 
 

  

Fraudulent Normal

Occurence 492                       284,807                 

Average 124.1                    88.3                      

Standard deviation 258.7                    250.1                    

Minimum 0.0 0.0

25% 1.0                        5.7                        

50% 9.8                        22.0                      

75% 106.3                    77.1                      

Maximum 2,125.9                  25,691.2                
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III. Evaluation Indicators  

3.1 Confusion Matrix 

There are many indicators for evaluating the effectiveness of the credit card fraud 

detection model, but most are derived from the confusion matrix
[6]

, as shown in Figure 3-1. 

  

 [Figure 3-1] Confusion Matrix 

Meanings of different positions in the confusion matrix are explained below. 

True Positives (TP): Number of fraudulent consumption behaviors with accurate classification 

False Positives (FP):Number of fraudulent consumption behaviors with wrong classification 

True Negatives (TN):Number of legal consumption behaviors with accurate classification 

False Negatives (TN):Number of legal consumption behaviors with wrong classification 

 

Basic performance measures derived from the confusion matrix are as follows 
[7]

.  

（1） Precision Rate: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 

（2） Recall Rate: 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

（3） False Positive Rate: 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 

 

（4） F-score：𝐹𝑠𝑐𝑜𝑟𝑒 =
(1+𝛽2)×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝛽2×𝑅𝑒𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (  𝛽 shows the importance of Precision 

relative to Recall. Usually 𝛽 = 1.) 

 

（5） Error Rate: 𝐸𝑅𝑅 =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
=

𝐹𝑃+𝐹𝑁

𝑃+𝑁
  

 

If a legal transaction is misjudged as a fraud, the bank will lose the profit of this 
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transaction; while if a fraudulent transaction is misjudged as legal, the bank will suffer 

loss. Therefore, Error Rate is also a major indicator. 

 

（6） Accuracy: 𝐴𝐶𝐶 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
=

𝑇𝑃+𝑇𝑁

𝑃+𝑁
 

 

3.2 Receiver Operating Characteristic Curve 

The ROC curve offers an effective tool for comprehensive and accurate evaluation of 

classification models by means of graphic illustration. It is generated by dividing the results of 

the training model into several critical points, plotting the sensitivity (TPR) corresponding to 

each critical point on the Y-axis, and 1-specificity (FPR) on the X-axis, and then connecting all 

these critical points together. The ROC curve can also determine the optimal threshold for 

detection. The cut-off point closest to the (0,1) on the curve is the best critical point. This 

method can make the model's precision rate and recall rate higher, and the false positive rate 

lower 
[8]

. 

In other words, the threshold will affect the effectiveness of the classification rules 

themselves. For example, in order to improve the hit rate of prediction, if the credit card fraud 

behavior has a time characteristic, the bank can appropriately shrink the classification rule by 

reasonably adjusting the threshold value. 

 

 

[Figure 3-2] ROC Curve 

3.3 Area Under the ROC Curve 

AUC (Area Under the ROC Curve) score is another indicator to measure the performance 

of classification model. 
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IV. Model I：Logistic Regression Model 

4.1 Build Logistic Regression Model 

Logistic regression is a very widely used statistical technique for identifying fraud 

behavior models in binary classification problems. It is a multi-class variable analytical 

method that studies and observes the relationship between the result y and some influencing 

variables (𝑥1, 𝑥2, … 𝑥𝑛). Despite being a simple structure, it has a series of advantages such as 

small amount of calculation, fast speed and low storage resources when dealing with complex 

data systems composed of multiple indicators 
[9]

. 

4.1.1 Build Logistic Model 

The dependent variable class is an integer variable of 0-1, so the binomial logistic 

regression model is chosen. 
 

                                  

Y = {
1 𝐹𝑟𝑎𝑢𝑑𝑢𝑙𝑒𝑛𝑡
0 𝐿𝑒𝑔𝑎𝑙           

                        (4-1) 

 

Assume that the independent variable 𝑥 and the model parameter 𝜃 are defined as 

vectors of n + 1: 

𝑋𝑇 = [1, 𝑥1𝑥2 … 𝑥𝑛]                         (4-2) 

𝜃𝑇 = [1, 𝜃1𝜃2 … 𝜃𝑛]                         (4-3) 

 
The probability of fraudulent behavior 𝑝  in the logistic regression model can be 

obtained. 

 

𝑧 = 𝜃 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛 = 𝜃𝑇𝑋             (4-4) 

𝑝 = ℎ𝜃(𝑥) =
1

1+𝑒−𝑧
                       (4-5) 

Where 𝑧 is actually a linear regression formula, it also reflects that the core concept of 

logistic regression is derived from generalized linear regression model. This function is also 

called the sigmoid function. 

 

[Figure 4-1] Sigmoid Function Curve 
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As can be seen from Figure 4-1, the output of sigmoid function is between (0, 1), 

indicating that the data belongs to the probability of a certain category, and therefore the 

probability of fraudulent behavior and legal behavior is 

𝑃(𝑌 = 1|𝑥; 𝜃)=ℎ𝜃(𝑥)                         (4-6) 

𝑃(𝑌 = 0|𝑥; 𝜃)=1 − ℎ𝜃(𝑥)                        (4-7) 
 

On this basis, the ratio of the probability of credit card fraudulent consumption to the 

probability of legal consumption, also known as the odd of experiencing an event, is 

𝑅𝑜𝑑𝑑𝑠 =
𝑃(𝑌=1|𝑥;𝜃)=ℎ𝜃(𝑥)

𝑃(𝑌=0|𝑥;𝜃)=1−ℎ𝜃(𝑥)
= 𝑒𝜃+𝜃1𝑥1+𝜃2𝑥2+⋯+𝜃𝑛𝑥𝑛             (4-8) 

 

ln(𝑅𝑜𝑑𝑑𝑠) = 𝜃 + 𝜃1𝑥1 + 𝜃2𝑥2 + ⋯ + 𝜃𝑛𝑥𝑛 = 𝑧               (4-9) 

 

Equation 4-9 is the logit function. It can be seen that the logistic regression model is a 

linear regression model with the logit function as its dependent variable. 

4.1.2 Maximum Likelihood Estimation 

Parameters need to be estimated based on the existing objective function. The maximum 

likelihood estimation method is adopted here. Its calculation process is as follows: 

Suppose there are 𝑚 observation samples with values of 𝑦1, 𝑦2, 𝑦3, … 𝑦𝑚 respectively. 

According to equation 4-6, the probability of one of the observation values is 

𝑃(𝑦𝑖) = 𝑝𝑖
𝑦

× (1 − 𝑝𝑖)
1−𝑦                        (4-10) 

Due to the independence among the observation samples, the product of each edge 

distribution is used to construct the joint distribution. The likelihood function is obtained as: 

𝐿(𝜃) = ∏ 𝑝(𝑥𝑖)
𝑦𝑖(1 − 𝑝(𝑥𝑖))1−𝑦𝑖

𝑚

𝑖=1

 

                  (4-11) 

The goal is to find the parameter estimate that maximizes the likelihood function, that is, 

to find the parameters 𝜃0, 𝜃1, 𝜃2 … 𝜃𝑛 , such that L(w) takes the maximum value. Therefore, 

Log-likelihood function 

ln𝐿(𝜃) = ∑(𝑦𝑖 ln(𝑝(𝑥𝑖)) + (1 − 𝑦𝑖) ln(1 − 𝑝(𝑥𝑖)))

𝑚

𝑖=1

 

         (4-12) 

To solve the maximum value, the partial derivative of the objective function is set to be 0. 

𝜕In𝐿(𝜃𝑘)

𝜕𝜃𝑘
= ∑ 𝑥𝑖𝑘

𝑚

𝑖=1

[𝑦𝑖 − 𝑝(𝑥𝑖)] = 0 

                 (4-13) 
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There are n + 1 partial derivative equations. The n + 1 nonlinear functions of the 

n + 1 model parameters are solved using the Newton-Raphson(N-R) method. Then 

𝜃𝑖+1 = 𝜃𝑖 − 𝐸̂−1g                        (4-14) 

𝜃𝑖  and 𝜃𝑖+1 are iterative i and i + 1 estimated parameter vectors, 𝐸̂−1is the second 

derivative information matrix, and 𝑔 is the first derivative vector. 

4.2 Model Solution 

4.2.1 Confusion Matrix 

 
 

[Figure 4-2] Confusion Matrix 

Use k-fold cross-validation, and at the same time conduct training and validation on 

randomly-generated sub-samples repeatedly. Based on the indicators defined in Chapter 3.1, 

the following evaluation values can be obtained for logistic regression model. 

[Table 4-1] Result Analysis 

 

 It can be concluded from Accuracy that the overall accuracy of the model is high, 

although this is related to the fact that most of the samples are predicted to be legal. However, 

as seen from the Recall of 0.985, the model achieves fairly good accuracy for fraud detection 

on this slanted data set. 

4.2.2 Logistic Model based on Kernel Density Estimation 

(1) Credit card fraud under the Bayesian view 

Suppose there are factors 𝐴 and 𝐵 that affect the model prediction result 𝑌, and the 

factors 𝐴 and 𝐵 are independent of each other, then according to the Bayesian principle, the 

Precision Recall F_score Accuracy Error

95.6% 98.5% 0.970 97.0% 3.00%
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following equation is obtained. 

 

𝑃(𝑌|𝐴𝐵) =
𝑃(𝐵|𝐴𝑌)𝑃(𝑌|𝐴)

𝑃(𝐵|𝐴)
=

𝑃(𝐵|𝑌)𝑃(𝑌|𝐴)

𝑃(𝐵)
 

 

The prior probability distributions of 𝑃(𝑌)、𝑃(𝐴) and 𝑃(𝐵) can be seen from a large 

amount of data.  

𝑃(𝑌|𝐴𝐵) ∝ 𝑃(𝑌|𝐴)𝑃(𝐵|𝑌)                      (4-15) 

In this paper, factor A consists of the characteristics of each principal component, and 

factor B  includes time and consumption amount. These two factors are relatively 

independent of each other. Since the probability of credit card frauds does not change 

continuously with respect to time and consumption amount, it is of little significance to 

include it in the logistic model. Therefore, this paper mainly uses the principal component 

feature (corresponding to factor A) to train the logistic model, and the model after training 

can calculate the risk of credit card frauds 𝑃(𝑌|𝐴). On this basis, it is still necessary to 

consider the role of time and consumption amount, that is, consider the probability 𝑃(𝐵|𝑌). 

Since this paper is more concerned about the risk of credit card frauds, the only thing needs to 

get is the distribution 𝑃(𝐵|𝑌 = 1). 

Kernel density estimation is a technique to estimate the unknown probability distribution 

of a random variable, based on a sample of points taken from that distribution.
[10]

 It can be 

used for the estimation of the distribution 𝑃(𝐵|𝑌 = 1). However, since the joint distributions 

of time 𝑇 and amount 𝐴𝑀 in the fraud samples are not continuous, the sample space is 

discretized, and the probability that the fraud samples appear in the discrete sample space 

𝑃(𝑇, 𝐴𝑀│𝑌 = 1) is calculated. 

Based on 𝑃(𝑌 =  1|𝐴) predicted by the logistic model, joint distributions of the time 

and the amount of consumption under the fraud samples are utilized to correct 𝑓(𝑇, 𝐴𝑀)  =

 𝑃(𝑇, 𝐴𝑀|𝑌 =  1). Finally, the fraud risk 𝑃(𝑌 =  1|𝐴, 𝑇, 𝐴𝑀) under various factors can be 

estimated. 

 

 (2) Credit card fraud alert - threshold determination 

A fixed fraud warning threshold 𝛼𝑜  is set. When 𝑃(𝑌 =  1|𝐴 =  𝑎, 𝑇 =  𝑡, 𝐴𝑀 =

 𝑎𝑚) ≥ 𝛼𝑜, the sample (𝐴 =  𝑎, 𝑇 =  𝑡, 𝐴𝑀 =  𝑎𝑚 ) is considered to be a fraud sample. In 

practice, the logistic model obtained by training is used to complete the classification, so there 

is another threshold 𝛼. When 𝑃(𝑌 =  1|𝐴) ≥ 𝛼, the sample can be determined to be a fraud. 

𝛼𝑜  ∝  𝑓(𝑇, 𝐴𝑀)𝛼 

i.e.  

𝛼 ∝  [𝑓(𝑇, 𝐴𝑀)]−1                        (4-16) 

𝛼 represents the bank's pursuit of recall rate, or the pressure on credit card frauds, while 

the probability value 𝑓(𝑇, 𝐴𝑀)  represents the likelihood of fraud samples in the 

corresponding time period and amount. These two have inverse relationship. That is to say,  

in the high incidence period of frauds, the bank should increase the intensity of the attack, i.e., 

lower the identification threshold; while in the low incidence period, the threshold 𝛼 could 



 

Page 18 

be set higher. Therefore, the threshold 𝛼 of the logistic model should be the proportional 

function of [𝑓(𝑇, 𝐴𝑀)]−1. 

4.2.3 Empirical Study on Kernel Density Estimation & Logistic Model  

 Using kernel density estimation, the threshold is determined by Time under the condition 

that the consumption amount is constant. The confusion matrix of the model is shown in 

Figure 4-3, and the final F-score is 0.971. 

 

[Figure 4-3] Confusion Matrix of Kernel Density Estimation + Logistic Model  

4.3 Model Evaluation 

4.3.1 Merits of Linear Logistic Regression Model  

The linear logistic regression model is relatively successful in the application of credit 

card scoring. There are three main advantages. 

(1) The independent variable can be a continuous variable or a discrete variable, and the value 

is not strictly limited. 

(2) The data are not required to satisfy the assumptions that they follow normal distribution 

and the covariances are the same, which expands the scope of application. 

(3) The value of the dependent variable of the regression model is binary. The model 

intuitively indicates whether an event can occur, the probability of occurrence, the influencing 

factors, and the weight of each influencing factor. 

4.3.2 Improvement on Linear Logistic Regression Model  
 

(1) Different strategies can be adopted for threshold selection (strict, loose, multi-standard). 

(2) The model can be further tested by rejecting deduction.  
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V. Model II: AdaBoost Ensemble Learning Model 

5.1 Model II: AdaBoost Ensemble Learning Model Based on Single-Layer 

Decision Tree 

After the previous data processing, this paper uses the single-layer decision tree to 

classify fraudulent transaction data and legal transaction data. The single-layer decision tree 

model makes decisions based on a single feature. Steps of algorithm are as follows. 

(1) The features are divided according to the horizontal and vertical coordinates. The 

horizontal coordinate is regarded as feature one, and the vertical coordinate as feature two, 

and one of them is selected to make the decision. 

(2) Based on the first step, since the outer loop is the loop of the data set feature, 

classifications are made according to the first indicator, then there is a node in the first 

feature point, i.e., the left and right branches of the tree. The judgment is made using 

following steps. 

Step 1: According to the data value, set a threshold T, in which T is equal to the 

minimum eigenvalue (the minimum value of the first coordinate) + (1,2,3,4,5, … ) × step 

size, and the threshold changes cyclically; the one greater than threshold T is the "right 

node", otherwise it is the "left node". 

Step 2: Determine the error rate. Construct an all-1 column vector e. If the prediction 

result is the same as the label, modify the value corresponding to initialization to 0, and 

finally use a weight vector D. T × e, which is the final error rate. If the error rate is less than a 

certain threshold, it is the most efficient decision tree. 

Step 3: Compare the error rates of the "right node" and the "left node", and meanwhile 

judge the error rate of the first feature in the large loop, or the error rate of the second feature. 

Through calculation, accuracy rate of the simple classifier is found to be too low. In order 

to improve it, optimization is made by AdaBoost algorithm. 

AdaBoost is an iterative algorithm with a simple idea of training different classifiers 

(weak classifiers) for the same training set, and then weighting these classifiers together to 

form a stronger final classifier (strong classifier)
 [11]

.
 
 

Indicators obtained after data processing is used as a training set, where the value of each 

field is a training sample, and the field is used as a test set. Steps are as follows. 

(1) Give a training data set: (𝑥1, 𝑦1), … (𝑥𝑛, 𝑦𝑛), where 𝑦1 ∈ {−1,1} is used to represent 

the classification label of the training sample, 𝑖 = 1, … , n. 
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(2) First, initialize weight distribution of the training data. The same value is assigned to 

the initial weight: 𝑤𝑖 =
1

𝑛
. Train the initial weight distribution 𝐷1(𝑖) of the sample 

set this way. 

D1(𝑖) = (𝑤1, 𝑤2, … 𝑤𝑛) = (
1

𝑛
,

1

𝑛
, …

1

𝑛
)                                      (5-1) 

(3) Iterate 𝑡 = 1, … , 𝑇 

a) If the weak classifier h has the lowest error rate, it is selected as the t-th basic 

classifier H𝑡. And calculate the weak classifier 𝐻𝑡: 𝑋 → {−1,1}, the error of the 

weak classifier on the distribution 𝐷𝑡 is 

𝑒𝑡 = 𝑃(𝐻𝑡(𝑥𝑖) ≠ 𝑦𝑖) = ∑ 𝑤𝑡𝑖𝐼(𝐻𝑡(𝑥𝑖) ≠ 𝑦𝑖)𝑛
𝑖=1             (5-2) 

b) The weak classifier weight is represented by α, then the weight can be calculated 

as follows. 

αt =
1

2
ln (

1 − 𝑒𝑡

𝑒𝑡
) 

c) Update the weight distribution of the training samples 𝐷𝑡 + 1: 

𝐷𝑡+1 =
𝐷𝑡(𝑖)exp (−𝛼𝑡𝑦𝑖𝐻𝑖(𝑥𝑖))

𝑧𝑖
                   (5-3) 

where 𝑧𝑖 is normalized 

𝑧𝑖 = 2 √𝑒𝑡(1 − 𝑒𝑡) 

d) Finally, the weak classifiers are combined by the weak classifier weight αt, ie: 

𝑓(𝑥)=∑ 𝛼𝑡𝐻𝑡(𝑥)𝑇
𝑡=1                     (5-4) 

 

A strong classifier is obtained using the sign function: 

𝐻𝑓𝑖𝑛𝑎𝑙 = 𝑠𝑖𝑔𝑛(𝑓(𝑥) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑡𝐻𝑡(𝑥)𝑇
𝑡=1 )           (5-5) 

5.2 Model Solution 

The process of identifying whether there is consumer fraud in the record is mainly divided 

into the following 4 steps. 

(1)Preprocess data. Preprocess all the original field contents to prepare for the next step. 

(2)Generate weak classifiers. Generate eight weak classifiers from the eight indicators 

obtained after data preprocessing through the single-layer decision tree weak classifier. 

(3)Generate a strong classifier. Generate a strong classifier through the AdaBoost iterative 

algorithm. 

(4)Identification: After pre-processing the consumption records that need to be identified, the 

trained strong classifier is used to determine whether there are frauds. The model uses the 

following process to determine whether there are frauds. 
 



 

Page 21 

 

[Figure 5-1] Algorithm Flowchart 

5.3 Data Preprocessing 

 The oversampled data set data_PCA_Oversampling and the undersampled data set data _ 

PCA _ Undersampling obtained in Chapter 2.2 are used. Among them, the 0,1 ratio of Class 

in both data sets is 1. Select 70% as the training set, and the rest as the test set. 

5.4 AdaBoost Iteration on Weak Classifiers 

 Next, using the established AdaBoost iterative algorithm model, the given transaction 

information is classified through the strong classifier obtained from weighted combination of 

weak classifiers. Final result is analyzed as follows. 

(1) Test analysis of oversampling results: 

[Table 5-1]  Test Analysis of Oversampling Results 

 

 

 During the oversampling process, there are 81,804 transactions which are predicted 

fraudulent and are actually frauds, 3,500 transactions which are predicted legal but are 

actually fraudulent, 1,025 transactions which are predicted fraudulent but are actually legal, 

and 84,252 transactions which are predicted legal and are actually legal. Result is shown in 

Table 5-1.  

1 0

1 81,804         3,500          85,304         

0 1,025          84,252         85,277         

82,829         87,752         170,581       

Confusion Matrix
Predicted

Total

Actual

Total
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 [Figure 5-2]   Relationship between Number of Oversampling Integrated Classifiers & Accuracy 

 

 From Figure 5-2, when the number of integrated classifiers (i.e., the number of weak 

classifiers) is one, the accuracy of prediction is in the range of 55% to 60%; when the number 

of integrated classifiers is increased, although the changing rate of Accuracy varies, the 

overall rate is on the rise and eventually closes to 100%. 

 

(2) Test analysis of undersampling results: 

[Table 5-2]  Test Analysis of Undersampling Results 

 

 

 During the undersampling process, there are 132 transactions which are predicted 

fraudulent and are actually frauds, 9 transactions which are predicted legal but are actually 

fraudulent, 3 transactions which are predicted fraudulent but are actually legal, and 146 

transactions which are predicted legal and are actually legal. Result is shown in Table 5-2. 

1 0

1 132 9 141

0 3 146 149

135 155 290

Confusion Matrix
Predicted

Total

Actual

Total
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[Figure 5-3]   Relationship between Number of Undersampling Integrated Classifiers & Accuracy 

 From Figure 5-3, when the number of integrated classifiers (i.e., the number of weak 

classifiers) is one, the accuracy of prediction is in the range of 55% to 60%; when the number 

of integrated classifiers is increased, Accuracy rate grows steadily and eventually closes to 

100%. 

 

(3) Comprehensive analysis of two data sets 

Through the two methods of over-sampling and under-sampling, specific values of 

evaluation indicators are calculated according to the definitions. It can be concluded from the 

following table that the error rate calculated by the AdaBoost algorithm model is less than 5%, 

the recall rate is close to 95%, the precision rate is close to 98%, and the F-score is over 0.95, 

as shown in Table 5-3. 

[Table 5-3]  Evaluation Indicator Values of Oversampling & Undersampling 

 

Through the above analysis, the accuracy of the AdaBoost algorithm model is 

significantly higher than that of the original simple classifier. Therefore, the model has 

strong fraud detection ability, and has a high reference value. 

5.5 Improvement and Promotion 

Evaluation Indicator Oversampling Undersampling

Recall Rate 95.9% 93.6%

Precision Rate 98.8% 97.8%

F_score 0.973 0.957

Error Rate 2.65% 4.14%

Accuracy Rate 97.3% 95.9%
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 Using a single-level decision tree with simple binary classifier as a weak classifier does 

not necessarily distinguish a small number of fraudulent customers. For this reason, it is 

necessary to find a weak classifier with better detection ability. For example, use SVM 

classifier or discriminant analysis classifier to improve the capability of fraud detection. The 

approach of constructing weak classifiers and iterating them into a strong classifier can be 

extended to fields such as NLP processing, image processing or recommendation systems. For 

example, achieve accurate detection by obtaining various feature indicators after data 

processing and selecting parameters adaptively through AdaBoost iteration. 
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VI. Model III: AutoEncoder Deep Learning Model based on 

Tensorflow 

 AutoEncoder is a multi-layer forward neural network. It is an unsupervised learning and 

has important applications in data dimensionality reduction and feature extraction. 

AutoEncoder can be used to initialize the weight matrix before the start of deep learning 

training. 

6.1 Model Solution 

 In the unsupervised learning algorithm, usually use an input vector 𝑥 for encoding, 

select "tanh" as the calculation method for activating function as shown in equation (6-1), and 

then decode to obtain a coding result 𝑦, which produces reconstruction vector 𝑧 by the 

decoder, as shown in equation (6-2). The process can be regarded as compression encoding of 

the input data, representing the high-dimensional original data with a low-dimensional vector. 

This way the compressed low-dimensional vector can retain the typical characteristics of the 

input data, so that the original data can be restored more conveniently 
[12]

.  

tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
                             (6-1) 

z = 𝑔𝜃(𝑦) = 𝑠(𝑊𝑦 + 𝑏)                        (6-2) 

 The advantage of AutoEncoder is that its learning process is completely unsupervised. 

The loss function adopted in this paper is shown in equation (6-3) 

L(X, Z) = ∑ 𝐾𝐿(𝑥𝑖 ∥ 𝑧𝑖
𝑛
𝑖=1 )                      (6-3) 

 𝑥 represents a matrix of ｎ sample vectors, and 𝐾𝐿(𝑥𝑖 ∥ 𝑧𝑖) represents the divergence 

between 𝑥𝑖 and 𝑧𝑖. Since the dimension of ｙ is much smaller than that of 𝑥, ｙcan learn 

not only low-dimensional information but also high-dimensional information. Using the 

stochastic gradient descent algorithm as the weight training algorithm, the error of the output 

result can be minimized. The weight matrix is updated by the following formula (6-4), where 

η is the updated step size. 

𝑊 ← 𝑊 − 𝜂
𝜕𝐿(𝑋,𝑍)

𝜕𝑊
                          (6-4) 

 The nonlinear dimension reduction approach is to keep certain local structure or 

information of the original high-dimensional data unchanged and directly find a 

low-dimensional matrix 𝑦 to replace the high-dimensional matrix 𝑥. In order to prevent the 

over-fitting phenomenon, the learning of the model is constrained by adopting the variable 

selection method. The data is encoded sparsely to ensure the sparsity of each code in the 
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algorithm. Formula (6-4) is specifically adjusted to equations (6-5) and (6-6) for calculation 
[13]

.  

L(x, z) = KL(x ∥ z) + Lasso(𝜃)                      (6-5) 

Lasso(𝜃) = λ ∑ |𝜃𝑗|
|𝜃|
𝑗=0                           (6-6) 

6.2 Data Preprocessing 

 Since AutoEncoder itself comes with dimensionality reduction, there is no need to use 

PCA processed data sets. The oversampled data set data_Oversampling and the undersampled 

data set data _ Undersampling for PCA in Chapter 2.2 are used. Among them, the 0,1 ratio of 

Class in both data sets is 1. Ratio of training set and test set is still 7:3. 

6.3 Build AutoEncoder Model 

 This paper builds the AutoEncoder model based on the open source top-level framework 

of Tensorflow and Keras. Set 29 neurons as input layers, and establish two coding layers and 

two decoding layers, a total of four fully connected Dense layers, which are 28, 10, 10, 29 

neurons respectively. L1 normalization will be used during training. Each layer uses the 

"tanh" function as the activation function. During training, set 150 epochs and the batch bitch 

size as 32 samples. 

6.4 Load Training Model to Identify Test Data 

 According to the trained model, count the prediction data and test data in undersampling 

and oversampling data sets, and calculate specific values of various indicators with correct 

classification. The results are shown in Table 6-1. 

[Table 6-1] Values of Undersampling and Oversampling Indicators 

 

Category Prediction Test Prediction Test

count 290 290 170581 170581

mean 14.23425 0.52069 9.73891 0.49824

std 31.66916 0.50044 19.08866 0.49999

min 0.16633 0 0.07328 0

25% 0.49985 0 0.39873 0

50% 1.04733 1 1.10841 0

75% 9.27170 1 9.11526 1

max 266.32854 1 301.32378 1

Data Set
Undersampling Oversampling

data_Undersampling data_Oversampling
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 At the same time, the identification results are analyzed according to indicators defined 

previously. The ROC curve evaluation method is used to assess the classification ability and 

precision of the model. 

(1) Undersampling test data 

 

 [Figure 6-1] Undersampling ROC Curve on Cumulative Risk Assessment 

 The closer the ROC curve is to the upper left corner, the stronger the model’s 

classification ability. The overall diagnostic accuracy can be assessed by the area under the 

curve. According to the above Figure 6-1, by undersampling test, the ROC curve of the 

training model achieves the expected effect, indicating that the model is effective to detect 

fraud transactions with the AUC score of 0.9439.  

 

[Figure 6-2] Comparison of Recall Rate and Precision Rate 

 Comparing the Precision rate and the Recall rate, it can be concluded from Figure 6-2 

that the Recall rate is negatively correlated with the Precision rate, that is, the higher the 

Recall rate, the lower the Precision rate, and vice versa. If the error is greater than the 

predetermined threshold, mark it as fraud, set threshold=3.5. The prediction is as follows. 
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[Figure 6-3] Different Types of Reconstruction Errors for Undersampling 

 The following confusion matrix is constructed for different types of reconstruction errors, 

in which 135 are predicted to be fraudulent and are actually fraudulent, and 139 are predicted 

to be legal and are actually legal. It can be concluded from the error classification matrix that 

accuracy rate of classification is 94.482%. 

 

[Figure 6-4] Confusion Matrix of Different Types of Reconstruction Errors for Undersampling 

(2) Oversampling test data 
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 [Figure 6-5] Oversampling ROC Curve of Cumulative Risk Assessment 

 Through the oversampling test, according to the above figure 6-5, the ROC curve is close 

to the upper left corner, indicating that the model is effective to detect fraud transactions with 

the AUC score of 0.965. 

 

 

[Figure 6-6] Comparison of Recall Rate and Precision Rate 

 The Precision rate is compared to the Recall rate again. From Figure 6-6, it can be 

concluded that the Recall Rate is negatively correlated with the Precision rate, that is, the 

higher the Recall rate, the lower the Precision rate and vice versa. Set threshold = 3.6 and 

mark the error greater than the threshold as fraud. The prediction is as follows. 
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[Figure 6-7] Different Types of Reconstruction Errors for Oversampling 

 The following confusion matrix is constructed for different types of reconstruction errors, 

in which 84,301 are predicted to be fraudulent and are actually frauds, and 84,130 are 

predicted to be legal and are actually legal. It can be obtained from the error classification 

matrix that accuracy rate of classification is 98.74%, which is a high-quality classifier of good 

reference significance. 

 

[Figure 6-8] Confusion Matrix of Different Types of Reconstruction Errors for Oversampling 

6.5 Robustness Test 

 In the paragraphs above, when the Model III determines the epochs value, the assumption 

is 150. Selecting the subjective factors, the paper performs robustness 
[14]

 analysis to observe 

the results of the model when the epochs value is different from the previously assumption. 

To observe the effect, the function graph is produced to illustrate assumed epochs value and 

results of oversampling and undersampling. Graph is shown below. 
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 [Figure 6-9] Loss Curve of the Model - Undersampling 

 

[Figure 6-10] Loss Curve of the Model - Oversampling 

 As shown in Figure 6-10, loss of the undersampling model is basically below 0.145 after 

stabilization. After 200 epochs, iterations tend to converge better. As shown in Figure 6-10, 

the loss of the oversampling model is basically maintained below 0.097. After 50~200 epochs, 

iterations tend to converge better. For the general purpose of the model, choose 150 as the 

epoch value to achieve better convergence. 

6.6 Improvement and Promotion  

 Over-fitting phenomenon will affect the result of Model III. In order to overcome it, this 

paper uses the absolute value function as the penalty term to compress the coefficient of the 

AutoEncoder, and introduces the parameter λ. When the parameter value becomes bigger, the 

penalty becomes larger, and the training result will become sparse, allowing the model to 

reach a balance between fitting ability and generalization ability. This is the role of the L1 

paradigm regularization. In order to help the model to be quickly sparse, noise can be added 

to the input layer. And at the same time, the random gradient descent algorithm can be 
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utilized to prevent the model from being affected by individualization or irrelevant input. This 

can make the training model converge quickly and enhance the balance ability of pair fitting 

and generalization of the model.  

6.7 Model Evaluation & Comparison 

 Taking the oversampled data set as an example, compare Model II and Model III, 

including the basic principles, training time, F-score, error rate and so on. Results are shown 

in Table 6-2. 

[Table 6-2] Comparison between Model II and Model III 

 

  

Take Oversampling as Example Model II Model III

Method Traditional Machine Learning Deep Learning

Training Time 276s 3123s

F_score 0.973087 0.9874

Error Rate 2.65% 1.73%

Threshold Self-adjusted Manually-adjusted

Data Loss 22.50% 0
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VII. Conclusion 

    This paper carries out the research on credit card fraud risk identification model and 

related early warning analysis. By using the construction of feature indicators, the credit card 

fraud early warning model basing on kernel density and logistic is built up constructively. At 

the same time, ensemble models based on single-layer decision tree classifier and deep neural 

network are also constructed, for better generalization and preventing over-fitting or 

under-fitting issues. In the process of model training, the paper focuses on handling the 

imbalance of data sets by training the model with oversampling and undersampling methods. 

Results show that the oversampling based training method can effectively improve the 

prediction accuracy of the model and guarantee a comparatively higher Recall rate. Finally, 

through the robustness analysis, it is verified that the model can be applied to solve the 

problems of poor data quality, cold start of the model, etc. It also proves that the model has 

high resistance to structural changes, high robustness and application values. 

   However, there is still room for improvement. 

(1) Regarding the data: Credit card transaction data have a very high degree of 

confidentiality. The sample data in this paper are already second-hand processed after 

PCA with incomplete information, which makes the model training difficult. If 

original data are available, the effectiveness and robustness of the fraud risk model 

are expected to be higher with more practical significance. 

(2) Regarding the model: In the models proposed in this paper, the construction of 

classifiers also requires training with training set. In the actual learning process, 

facing the challenge of more complex and volatile transaction data, identification 

accuracy can only be improved through learning from various training sets. Model 

re-learning through manual intervention may not meet the requirements for rapid data 

growth. 

 Regarding fraud risk identification and early risk warning, there is also a lot to improve. 

For example, the self-learning mechanism of the model could be improved so that it can 

continuously learn and evolve according to the changes in order to avoid the decline of 

recognition accuracy due to such data changes. Also considering the actual requirements of 

banks, the parameters are dynamically adjusted in the model for better universality. These 

issues shall be better addressed with the continuous optimization of data mining technology 

and deep learning algorithms. Meanwhile, with the continuous improvement of credit card 

fraud risk prevention and control system, the risk models proposed in the paper shall be more 

mature and stable.  
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Appendix 

import pandas as pd 

 

#All_Data=pd.read_csv("resampled_addtitle.csv") 

All_Data=pd.read_csv("../creditcard_data.csv") 

Data= All_Data 

Train=Data 

Target=Train['Class'] 

#V1=Train['V1'] 

Train.drop('Class',axis=1,inplace=True) #使用 pandas 包中 drop（）函数用于删除 class 列 

Train.drop('Amount',axis=1,inplace=True) 

Train.drop('Time',axis=1,inplace=True) 

correlationall = Train.corrwith(Target) 

#correlational_V1 = V1.corr(Target) 

print(correlationall) 

correlationall.to_csv('correlation_v28.csv') 

 

import pandas as pd 

import matplotlib.pyplot as plt 

 

 

data_corr_result = pd.read_csv("correlation_v28.csv", header = None) 

col0=data_corr_result.iloc[:,0] 

col1=data_corr_result.iloc[:,1] 

 

names = col0.values 

datas = col1.values 

datas = list(map(abs, datas)) 

 

name_larges, data_larges = [], [] 

for name, data in zip(names, datas): 

    if data >=0.3: 

        name_larges.append(name) 

        data_larges.append(data) 

 

#设置输出的图片大小 

figsize = 15,9 

figure, ax = plt.subplots(figsize=figsize) 

plt.tick_params(labelsize=18) 

plt.bar(name_larges, data_larges, facecolor='blue', width=0.8) 

plt.savefig('figure_3.png') 
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# -*- coding: utf-8 -*- 

""" 

""" 

 

 

import numpy as np 

import pandas as pd 

 

import matplotlib.pyplot as plt 

 

#%matplotlib inline 

 

import warnings 

warnings.filterwarnings('ignore') 

pd.set_option('display.float_format', lambda x: '%.4f' % x) 

 

font1 = {'family' : 'Times New Roman', 

         'weight' : 'normal', 

         'size'   : 12, 

} 

font2 = {'family' : 'Times New Roman', 

         'weight' : 'normal', 

         'size'   : 18, 

} 

data_cr = pd.read_csv('../creditcard_data.csv') 

data_cr.info() 

data_cr.shape 

data_cr.describe().T 

 

data_cr.groupby('Class').size() 

data_cr['Hour'] =data_cr["Time"].apply(lambda x : divmod(x, 3600)[0]) 

data_cr['Count'] =1 

data_cr[data_cr["Class"]== 0]["Amount"].describe() 

data_cr[data_cr["Class"]== 1]["Amount"].describe() 

linenumber = data_cr.shape[0] 

maxhour = (int)(data_cr['Hour'][linenumber-1]) 

 

data_hour1 = np.zeros(maxhour+1) 

for hourindex in data_cr['Hour']: 

    data_hour1[int(hourindex)] += 1 

 

index = np.arange(maxhour+1) 
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fig=plt.figure(dpi=128,figsize=(8,4)) 

plt.xlabel('Hour',  font1) 

plt.ylabel('Count', font1) 

 

my_x_ticks = np.arange(0, maxhour+1, 1) 

plt.xticks(my_x_ticks) 

plt.xticks(fontsize=6, fontname = "Times New Roman") 

plt.yticks(fontname = "Times New Roman") 

plt.plot(index, data_hour1) 

plt.savefig('linefig1.png', dpi=128) 

plt.show() 

 

data_hour2 = np.zeros(maxhour+1) 

for item, hournumber in zip(data_cr["Class"], data_cr["Hour"]): 

    if item == 1: 

        data_hour2[int(hournumber)] += 1 

index = np.arange(maxhour+1) 

fig=plt.figure(dpi=128,figsize=(8,4)) 

plt.xlabel('Hour', font1) 

plt.ylabel('Count', font1) 

my_x_ticks = np.arange(0, maxhour+1, 1) 

plt.xticks(my_x_ticks) 

plt.xticks(fontsize=6, fontname = "Times New Roman") 

plt.yticks(fontname = "Times New Roman") 

plt.plot(index, data_hour2) 

plt.savefig('linefig2.png', dpi=128) 

plt.show() 

 

data_hour3 = np.zeros(maxhour+1) 

for item, hournumber in zip(data_cr["Class"], data_cr["Hour"]): 

    if item == 0: 

        data_hour3[int(hournumber)] += 1 

index = np.arange(maxhour+1) 

fig=plt.figure(dpi=128,figsize=(8,4)) 

plt.xlabel('Hour', font1) 

plt.ylabel('Count', font1) 

my_x_ticks = np.arange(0, maxhour+1, 1) 

plt.xticks(my_x_ticks) 

plt.xticks(fontsize=6, fontname = "Times New Roman") 

plt.yticks(fontname = "Times New Roman") 

plt.plot(index, data_hour3) 

plt.savefig('linefig3.png', dpi=128) 

plt.show() 
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f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(15, 6)) 

ax1.scatter(data_cr["Hour"][data_cr["Class"] == 1], data_cr["Amount"][data_cr["Class"] == 

1],s=75,marker='s') 

ax1.set_title('Fraud',font2) 

ax1.set_ylabel('Amount', font2) 

 

ax2.scatter(data_cr["Hour"][data_cr["Class"] == 0], data_cr["Amount"][data_cr["Class"] == 

0],s=75,marker='s') 

ax2.set_title('Normal',font2) 

ax2.set_ylabel('Amount', font2) 

 

labels1 = ax1.get_xticklabels() + ax1.get_yticklabels() 

[label.set_fontname('Times New Roman') for label in labels1] 

[label.set_fontsize(14) for label in labels1] 

labels2 = ax2.get_xticklabels() + ax2.get_yticklabels() 

[label.set_fontname('Times New Roman') for label in labels2] 

[label.set_fontsize(14) for label in labels2] 

 

plt.xlabel('Hour', font2) 

#plt.ylabel('Amount', font2) 

my_x_ticks = np.arange(0, maxhour+1, 1) 

plt.xticks(my_x_ticks, fontname = "Times New Roman") 

 

plt.savefig('fig4.png', dpi=128) 

plt.show() 

 

 

f, (ax1, ax2) = plt.subplots(2, 1, figsize=(15,6)) 

ax1.hist(data_cr["Amount"][data_cr["Class"]== 1], bins = 100,range=(0,2500),log=True) 

ax1.set_title('Fraud', font2) 

ax1.set_ylabel('Number of\nTransactions', font2) 

ax2.hist(data_cr["Amount"][data_cr["Class"] == 0], bins = 100,log=True) 

ax2.set_title('Normal', font2) 

ax2.set_ylabel('Number of\nTransactions', font2) 

 

labels1 = ax1.get_xticklabels() + ax1.get_yticklabels() 

[label.set_fontname('Times New Roman') for label in labels1] 

[label.set_fontsize(14) for label in labels1] 

 

labels2 = ax2.get_xticklabels() + ax2.get_yticklabels() 
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[label.set_fontname('Times New Roman') for label in labels2] 

[label.set_fontsize(14) for label in labels2] 

 

plt.xlabel('Amount', font2) 

#plt.ylabel('Number of\nTransactions', font2) 

plt.savefig('fig5.png', dpi=128) 

plt.show() 

 

 

import random 

from sklearn import preprocessing 

from sklearn.neighbors import NearestNeighbors 

import numpy as np 

import pandas as pd 

import csv 

class Smote: 

    """ 

    SMOTE 过采样算法 . 

    Parameters:  

    ----------- 

    k: int  

    选取的近邻数目 . 

    sampling_rate: int 

    采样 倍数 , attention sampling_rate < k.  

    newindex: int  

    生成的新样本 (合成样本 )的索引号 . 

    """ 

    def __init__(self, sampling_rate=5, k=5): 

        self.sampling_rate = sampling_rate  

        self.k = k 

        self.newindex = 0 

    def fit(self, X, y=None): 

        if y is not None: 

            negative_X = X[y==0] 

            negative_X = np.array(negative_X) 

            X = X[y == 1] 

            X = np.array(X) 

         

        n_samples, n_features = X.shape 

        # 初始化一个矩阵 , 用来存储合成样本 

        self.synthetic = np.zeros((n_samples * self.sampling_rate, n_features)) 

        synth_samples, synth_features = self.synthetic.shape 

        # 找出正样本集 (数据集 X) 中的每 一个样本在数据集 X 中的 k 个近邻 
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        knn = NearestNeighbors(n_neighbors=self.k).fit(X)  

        for i in range(len(X)): 

            k_neighbors = knn.kneighbors(X[i].reshape(1,-1),return_distance=False)[0] 

            # 对正样本集 (minority class samples)中每个样本 , 分别根据其 分别根据其 k 个

近邻生 成 

            # sampling_rate 个新的样本 

            self.synthetic_samples(X, i, k_neighbors) 

             

        if y is not None: 

            for i in range(61): 

                self.synthetic=np.delete(self.synthetic, 0, axis=0) 

            synth_samples, synth_features = self.synthetic.shape 

#            return (np.concatenate((self.synthetic, X, negative_X), axis=0),  

#                    np.concatenate(([1] * (len(self.synthetic) + len(X)), y[y == 0]), axis=0)) 

            return np.concatenate((self.synthetic, X, negative_X), axis=0) 

        return np.concatenate((self.synthetic, X), axis=0) 

 

    # 对正样本集  (minority class samples) 中每个样本  , 分别根据其  k 个近邻生成 

sampling_rate 个新的样本 个新的样本 

    def synthetic_samples(self, X, i, k_neighbors): 

        hang = len(self.synthetic) # 201809 

        for j in range(self.sampling_rate): 

            # 从 k 个近邻里面随机选择一个近邻 

            neighbor = np.random.choice(k_neighbors)  

            # 计算样本 X[i]X[i] X[i]与刚选择的近邻差 

            diff = X[neighbor]  - X[i] 

            # 生成新的数据 

            if self.newindex < hang : # 201809 

                self.synthetic[self.newindex] = X[i] + random.random() * diff 

            self.newindex += 1 

#            newindex_g = self.newindex 

# ------ 通过采样获取 calss 为 1 的数据 

 

#newindex_g = 0 

 

dataf=pd.read_csv('../creditcard_data.csv') 

 

print(dataf.shape) 

count_class = pd.value_counts(dataf['Class'],sort= True).sort_index() 

print (count_class) 

""" 

#数据标准化 
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from sklearn.preprocessing import StandardScaler #导入数据预处理模块 

dataf['Amount'] = StandardScaler().fit_transform(dataf['Amount'].values.reshape(-1,1)) # -1 表示系统

自动计算得到的行， 1 表示 1 列 

 

#dataf = dataf.drop("Time", axis=1) 

""" 

columnname = dataf.columns.values.tolist() 

print(columnname) 

 

data0 = []     

data1 = []     

data3 = []     

for i, element in enumerate(dataf['Class']): 

    if element == 1: 

        data1.append(dataf.iloc[i, :]) 

    else: 

        data0.append(dataf.iloc[i, :])    

X = np.array(data1) 

smote = Smote(sampling_rate=577, k=492) 

 

#data1=smote.fit(X).tolist() 

#data2=smote.fit(df, df['Class']).tolist()  

data2=smote.fit(dataf, dataf['Class']) 

 

#将过采样数据顺序打乱  

m2 = len(data2)  

index2 = np.array(range(0, m2)) 

np.random.shuffle(index2)  

data22 =[] 

for i in range(m2): 

    data22.append(data2[index2[i]]) 

 

#将过采用数据保存为 csv 

csvFile1 = open('data_Over_sampling.csv','w', newline='') # 设置 newline，否则两行之间会 ，否则

两行之间会 空一行 

writer = csv.writer(csvFile1)  

writer.writerow(columnname) 

for i in range(m2): 

    writer.writerow(data22[i])  

 

csvFile1.close()   #data_Over_sampling.csv 

print('data_Over_sampling.csv saved') 
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m0 = len(data0)  

m1 = len(data1) 

index1 = np.random.randint(m0,size=m1)    # np.random.randint(2,size=5)#array([0, 1, 1, 0, 1]) 

for i in range(m1): 

    index = index1[i] 

    data3.append(data0[index])  

 

 

data5 =np.concatenate((data3, data1), axis=0)   

 

#将下采样数据顺序打乱 

m5 = len(data5)  

index5 = np.array(range(0, m1*2)) 

np.random.shuffle(index5)  

data55 =[] 

for i in range(m5): 

    data55.append(data5[index5[i]]) 

 

#将下采样数据保存为 csv 

csvFile2 = open('data_Lower_sampling.csv','w', newline='') 

writer = csv.writer(csvFile2) 

writer.writerow(columnname) 

for i in range(m5): 

    writer.writerow(data55[i]) 

csvFile2.close()  #data_Lower_sampling.csv 

print('data_Lower_sampling.csv saved') 

 

# -*- coding: utf-8 -*- 

""" 

 

""" 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.model_selection import StratifiedKFold 

 

from sklearn.linear_model import LogisticRegression 

from sklearn.metrics import confusion_matrix 

import random 

import warnings 
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from pylab import mpl 

warnings.filterwarnings('ignore') 

mpl.rcParams['font.sans-serif' ] = ['SimHei'] 

def readdata(): 

    alls =pd.read_csv('data_Over_sampling_LR.csv') 

    x=alls.drop('Class',axis=1) 

    y=alls['Class'] 

    x=x.values 

    y=y.values 

    return x,y 

  

X,y=readdata() 

 

lrn = LogisticRegression() 

N = 5 

N_iter = 2 

 

for it in range(N_iter): 

    skf = StratifiedKFold(n_splits = N, shuffle = True) 

    for train_index, test_index in skf.split(X, y): 

        X_train, y_train = X[train_index], y[train_index] 

        X_test, y_test = X[test_index], y[test_index] 

        lrn.fit(X_train, y_train) 

        y_pred=lrn.predict(X_test) 

        y_prob = lrn.predict_proba(X_test)[:,lrn.classes_[1]] 

 

classes=['0' , '1' ] 

y_pred = lrn.predict(X_test) 

cm = confusion_matrix(y_test, y_pred) 

if lrn.classes_[0] == 1: 

    cm = np.array([[cm[1,1], cm[1,0]], [cm[0,1], cm [0,0]]]) 

plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) 

tick_marks = np.arange(len(classes)) 

plt.xticks(tick_marks, classes, rotation=45) 

plt.yticks(tick_marks, classes) 

thresh = cm.max() / 2. 

 

import itertools 

for i , j in itertools .product(range(cm.shape[0]), range(cm.shape[1])): 

    plt .text(j , i , cm[i, j ], 

    horizontalalignment="center", 

    color="white" if cm[i, j ] > thresh else "black")             

plt .tight_layout() 
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plt .ylabel('Actual Class') #真实类别 

plt .xlabel('Predicted Class') #预测类别 

plt .show() 

 

# -*- coding: utf-8 -*- 

""" 

 

""" 

 

import random 

from sklearn import preprocessing 

from sklearn.neighbors import NearestNeighbors 

import numpy as np 

import pandas as pd 

import csv 

class Smote: 

    """ 

    SMOTE 过采样算法 . 

    Parameters:  

    ----------- 

    k: int  

    选取的近邻数目 . 

    sampling_rate: int 

    采样 倍数 , attention sampling_rate < k.  

    newindex: int  

    生成的新样本 (合成样本 )的索引号 . 

    """ 

    def __init__(self, sampling_rate=5, k=5): 

        self.sampling_rate = sampling_rate  

        self.k = k 

        self.newindex = 0 

    def fit(self, X, y=None): 

        if y is not None: 

            negative_X = X[y==0] 

            negative_X = np.array(negative_X) 

            X = X[y == 1] 

            X = np.array(X) 

         

        n_samples, n_features = X.shape 

        # 初始化一个矩阵 , 用来存储合成样本 

        self.synthetic = np.zeros((n_samples * self.sampling_rate, n_features)) 

        synth_samples, synth_features = self.synthetic.shape 
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        # 找出正样本集 (数据集 X) 中的每 一个样本在数据集 X 中的 k 个近邻 

        knn = NearestNeighbors(n_neighbors=self.k).fit(X)  

        for i in range(len(X)): 

            k_neighbors = knn.kneighbors(X[i].reshape(1,-1),return_distance=False)[0] 

            # 对正样本集 (minority class samples)中每个样本 , 分别根据其 分别根据其 k 个

近邻生 成 

            # sampling_rate 个新的样本 

            self.synthetic_samples(X, i, k_neighbors) 

             

        if y is not None: 

            for i in range(61): 

                self.synthetic=np.delete(self.synthetic, 0, axis=0) 

            synth_samples, synth_features = self.synthetic.shape 

#            return (np.concatenate((self.synthetic, X, negative_X), axis=0),  

#                    np.concatenate(([1] * (len(self.synthetic) + len(X)), y[y == 0]), axis=0)) 

            return np.concatenate((self.synthetic, X, negative_X), axis=0) 

        return np.concatenate((self.synthetic, X), axis=0) 

 

    # 对正样本集  (minority class samples) 中每个样本  , 分别根据其  k 个近邻生成 

sampling_rate 个新的样本 个新的样本 

    def synthetic_samples(self, X, i, k_neighbors): 

        hang = len(self.synthetic) # 201809 

        for j in range(self.sampling_rate): 

            # 从 k 个近邻里面随机选择一个近邻 

            neighbor = np.random.choice(k_neighbors)  

            # 计算样本 X[i]X[i] X[i]与刚选择的近邻差 

            diff = X[neighbor]  - X[i] 

            # 生成新的数据 

            if self.newindex < hang : # 201809 

                self.synthetic[self.newindex] = X[i] + random.random() * diff 

            self.newindex += 1 

#            newindex_g = self.newindex 

# ------ 通过采样获取 calss 为 1 的数据 

 

#newindex_g = 0 

 

dataf=pd.read_csv('../creditcard_data.csv') 

 

#数据标准化 

print(dataf.shape) 

count_class = pd.value_counts(dataf['Class'],sort= True).sort_index() 

print (count_class) 

from sklearn.preprocessing import StandardScaler #导入数据预处理模块 
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dataf['Amount'] = StandardScaler().fit_transform(dataf['Amount'].values.reshape(-1,1)) # -1 表示系统

自动计算得到的行， 1 表示 1 列 

 

dataf = dataf.drop("Time", axis=1) 

columnname = dataf.columns.values.tolist() 

print(columnname) 

 

data0 = []     

data1 = []     

data3 = []    # class =0 random samnple from data0 

for i, element in enumerate(dataf['Class']): 

    if element == 1: 

        data1.append(dataf.iloc[i, :]) 

    else: 

        data0.append(dataf.iloc[i, :])    

X = np.array(data1) 

smote = Smote(sampling_rate=577, k=492) 

 

 

data2=smote.fit(dataf, dataf['Class']) 

 

#将过采样数据顺序打乱 

m2 = len(data2)  

index2 = np.array(range(0, m2)) 

np.random.shuffle(index2)  

data22 =[] 

for i in range(m2): 

    data22.append(data2[index2[i]]) 

 

#将过采用数据保存为 csv 

csvFile1 = open('data_Over_sampling.csv','w', newline='') # 设置 newline，否则两行之间会 ，否则

两行之间会 空一行 

writer = csv.writer(csvFile1)  

writer.writerow(columnname) 

for i in range(m2): 

    writer.writerow(data22[i])  

 

csvFile1.close()   #data_Over_sampling.csv 

print('data_Over_sampling.csv saved') 

 

 

#随机选取 492 个 class=0 的数据项 

m0 = len(data0)  



 

Page 47 

m1 = len(data1) 

index1 = np.random.randint(m0,size=m1)    # np.random.randint(2,size=5)#array([0, 1, 1, 0, 1]) 

for i in range(m1): 

    index = index1[i] 

    data3.append(data0[index])  

 

#下采样数据：将 class=1 和 class=0 合并到一个数组中， 总数据项 966 个 

data5 =np.concatenate((data3, data1), axis=0)  # size 492*2  

 

#将下采样数据顺序打乱 

m5 = len(data5)  

index5 = np.array(range(0, m1*2)) 

np.random.shuffle(index5)  

data55 =[] 

for i in range(m5): 

    data55.append(data5[index5[i]]) 

 

#将下采样数据保存为 csv 

csvFile2 = open('data_Lower_sampling.csv','w', newline='') 

writer = csv.writer(csvFile2) 

writer.writerow(columnname) 

for i in range(m5): 

    writer.writerow(data55[i]) 

csvFile2.close()  #data_Lower_sampling.csv 

print('data_Lower_sampling.csv saved') 

 

 

# -*- coding: utf-8 -*- 

""" 

 

""" 

#模型 3 

import pylab  

import numpy as np 

import pickle 

import matplotlib.pyplot as plt 

#%matplotlib inline 

from scipy import stats 

 

import tensorflow as tf  

import seaborn as sns 

from pylab import rcParams 

from sklearn.model_selection import train_test_split 
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from keras.layers import Input,Dense 

from keras.models import Model,load_model 

from keras.callbacks import ModelCheckpoint,TensorBoard 

from keras import regularizers 

import pandas as pd 

from pylab import mpl 

import time 

mpl.rcParams['font.sans-serif'] = ['KaiTi'] # 指定默认字体 

mpl.rcParams['axes.unicode_minus'] = False #  解决保存图像是负号 '-'显示为方块的问题 

#data =pd.read_csv('creditcard_data.csv') 

data =pd.read_csv('data_Lower_sampling.csv') 

#查看数据格式 

# print(df.head()) 

#查看数据结构 

# print(df.shape) 

count_classes = pd.value_counts(data['Class'],sort = True).sort_index()  

count_classes.plot(kind='bar',rot=0) 

plt.title('class 的分布情况') 

plt.xlabel('Class') 

plt.ylabel('数目') 

plt.show() 

# 

RANDOM_SEED=42 

x_train,x_test=train_test_split(data,test_size=0.3,random_state=RANDOM_SEED) 

y_train =x_train['Class'] 

#x_train=x_train[x_train.Class==0] 

x_train=x_train.drop(['Class'],axis=1)  

 

y_test=x_test['Class'] 

x_test=x_test.drop(['Class'],axis=1) 

 

x_train=x_train.values 

x_test=x_test.values 

y_train=y_train.values 

y_test=y_test.values 

 

print(x_train.shape) 

input_dim=x_train.shape[1] 

encoding_dim=14 

input_layer=Input(shape=(input_dim ,)) 

encoder=Dense(encoding_dim,activation='tanh',activity_regularizer=regularizers.l1(10e-5))(input_lay

er) 

encoder=Dense(int(encoding_dim/2),activation='relu')(encoder) 
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decoder=Dense(int(encoding_dim/2),activation='tanh')(encoder) 

decoder=Dense(input_dim,activation='relu')(decoder) 

autoencoder=Model(inputs=input_layer,outputs=decoder) 

nb_epoch=150 

batch_size=32 

autoencoder.compile(optimizer='adam',loss='mean_squared_error',metrics=['accuracy']) 

checkpointer=ModelCheckpoint(filepath='data_Lower_sampling.h5',verbose=0,save_best_only=True)  

tensorboard=TensorBoard(log_dir='.logs',histogram_freq=0,write_graph=True,write_images=True) 

history=autoencoder.fit(x_train, 

x_train,epochs=nb_epoch,batch_size=batch_size,shuffle=True,validation_data=(x_test,x_test),verbose

=1,callbacks=[checkpointer,tensorboard]).history 

print(history) 

# 

plt.plot(history['loss']) 

plt.plot(history['val_loss']) 

plt.title('Loss Curve of the Model') #型的损失曲线 

plt.ylabel('Loss Rate（%）') #丢失率 

plt.xlabel('Epoch') #迭代训练传播次数 

plt.legend(['train','test'],loc='upper right') 

plt.show() 

# data_Over sampling 过采样模型 

# data_Lower sampling 下采样模型 

autoencoder=load_model('data_Lower_sampling.h5') # 201809 

#autoencoder=load_model('creditcard_data.h5')   # 201809 

prediction=autoencoder.predict(x_test) 

mse=np.mean(np.power(x_test -prediction,2),axis=1) 

error_df=pd.DataFrame({'reconstruction_error':mse,'true_class':y_test}) 

print(error_df.describe()) 

from sklearn.metrics import (confusion_matrix,precision_recall_curve,auc,roc_curve, 

recall_score,classification_report,precision_recall_fscore_support)  

 

fpr,tpr,thresholds=roc_curve(error_df.true_class,error_df.reconstruction_error) 

# ROC 曲线 

roc_auc = auc(fpr, tpr)  

plt.title('ROC Curve') #ROC 曲线 

plt.plot(fpr, tpr, label='AUC = %0.4f'% roc_auc) 

plt.legend(loc='lower right') 

plt.plot([0,1],[0,1],'r -- ') 

plt.xlim([-0.001, 1]) 

plt.ylim([0, 1.001]) 

plt.ylabel('True Positive Rate ') #真阳性率 

plt.xlabel('False Positive Rate ') #假阳性率 

plt.show() 
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#精确率和召回率 

precision, recall, th = precision_recall_curve(error_df.true_class, error_df.reconstruction_error) 

plt.plot(recall, precision, 'b', label='Precision-Recall curve') 

plt.title('Recall vs Precision') 

plt.xlabel('Recall ') #召回率 

plt.ylabel('Precision ') #精准率 

plt.show() 

#准确率 

plt.plot(th, precision[1:], 'b', label='阈值-精准率曲线') 

plt.title('不同阈值的精准率') 

plt.xlabel('阈值') 

plt.ylabel('精准率') 

plt.show() 

#召回率 f 

plt.plot(th, recall[1:], 'b', label='阈值-召回率曲线') 

plt.title('不同阈值的召回率') 

plt.xlabel('阈值') 

plt.ylabel('召回率') 

plt.show() 

threshold=2.9 

y_pred = [1 if e > threshold else 0 for e in error_df.reconstruction_error.values] 

conf_matrix = confusion_matrix(error_df.true_class, y_pred)  

 

groups = error_df.groupby('true_class') 

fig, ax = plt.subplots() 

for name, group in groups: 

    ax.plot(group.index, group.reconstruction_error, marker='o', ms=3.5, linestyle='', label= 'Legal ' if 

name == 1 else 'Fraudulent') #正常交易 欺诈交易 

ax.hlines(threshold, ax.get_xlim()[0], ax.get_xlim()[1], colors='r', zorder=100, label='Threshold') #阈

值 

ax.legend()  

#plt.title('不同类别的重建误差') 

plt.ylabel('Reconstruction Errors') #重建误差 

plt.xlabel('Data Point Index') #数据点索引 

plt.show() 

LABELS=['Legal','Fraudulent'] #'正常','欺诈' 

# 

plt.figure() 

sns.heatmap(conf_matrix, xticklabels=LABELS, yticklabels=LABELS, annot=True, fmt='d') 

plt.title('Confusion Matrix') #混淆矩阵 

plt.ylabel('Actual Class') #实际的分类 

plt.xlabel('Predicted  Class') #预测的分类 

plt.show() 
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# # 

TP=0 

FN=0 

FP=0 

TN=0 

f1data=[] 

thresho=[]  

for i in range(0,500): 

    threshold = i*0.01 

    thresho.append(threshold) 

    y_pred = [1 if e > threshold else 0 for e in error_df.reconstruction_error.values]  

    conf_matrix = confusion_matrix(error_df.true_class, y_pred)  

    for T, P in zip(y_pred, y_test): 

        if T == 1 and P == 1:  

            TN += 1  

        if T == 1 and P == 0: 

            FN += 1  

        if T == 0 and P == 1: 

            FP += 1  

        if T == 0 and P == 0: 

            TP += 1  

 

    # 

    # print('TP' + str(TP)) 

    # print('FN' + str(FN)) 

    # print('FP' + str(FP)) 

    # print('TN' + str(TN)) 

    p = (TP + TN) / (TP + FN + FP + TN ) 

    print(str(p)) 

    f1data.append(p) 

plt.xlabel("阈值") # X 轴的文字 

plt.ylabel("F1") # Y 轴的文字  

plt.title("阈值 -F1 曲线") # 图表的标题 

plt.plot(thresho, f1data) 

plt.show() # 显示图片 

 

matlab code: 

AdaBoostTestmain.m 

 csv_data = csvread('creditcard.csv',1,0); 

 downsampling(csv_data, 'downsampling_data.csv'); 

 csv_alldata = csvread('downsampling_data.csv'); 

 fastPCA(csv_alldata(:,1:30),csv_alldata(:,31) ,8 ); 

 AdaBoostTest(); 
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AdaBoostTest.m 

function [same] = AdaBoostTest() 

    fprintf(' 读取数据中 ... \n'); 

    csv_data = csvread('下采样 8 个指标乱序.csv', 1, 0);  

    fprintf('读取完成.\n'); 

    same = zeros(8,1); 

    len = fix(length(csv_data(:,1))); 

    train_len = fix(len* 0.7);  

    train_data = csv_data(1:train_len,1:8);  

    train_label = csv_data(1:train_len,9); 

    test_data = csv_data(train_len+1:len,1:8);  

    test_label = csv_data(train_len+1:len,9); 

    fprintf('下采样\n') 

    for i=1:8 

        %length(train_data) 

        ens = fitensemble(train_data(:,1:i),train_label,'AdaBoostM1' ,100,'tree','type','classification'); 

        predict_label = predict(ens, test_data(:,1:i));  

        TP = 0; 

        FN = 0;  

        FP = 0; 

        TN = 0; 

        for i2=1:length(predict_label) 

            if test_label(i2,1) == 1 && predict_label(i2,1) == 1 

                TP = TP+ 1; 

            end 

            if test_label(i2,1) == 1 && predict_label(i2,1) == 0 

                FN = FN + 1; 

            end 

            if test_label(i2,1) == 0 && predict_label(i2,1) == 1  

                FP = FP + 1; 

            end 

            if test_label(i2,1) == 0 && predict_label(i2,1) == 0 

                TN = TN + 1; 

            end 

            if test_label(i2,1) == predict_label(i2,1) 

                same(i,1) = same(i,1) + 1;  

            end 

        end 

        same(i,1)=same(i,1)/length(predict_label)*100; 

        fprintf('%d 列： \n',i);  

        fprintf('TP: %f FN: %f\nFP: %f TN: %f\n',TP,FN,FP,TN); 

        P = TP / (TP+ FP);  
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        R = TP / (TP+ FN);  

        fprintf('P: %f R:%f\nF1: %f\n',P,R,2*P*R/(P+R));  

        fprintf('准确率 : %f %%\n',same(i,1)); 

    end 

end 

downsampling.m 

 

function [] = downsampling(data, resultFilename) 

    result = [];  

    randomNUM = [];  

    len = length(data(:,1)); 

    for i=1:483 

        while(1)  

            num = fix(rand(1) * len) + 1;  

            fprintf('%d\n',num) 

            if any(randomNUM==num)==0  

                break 

            end 

        end 

        result = [result;data(num,:)];  

        csvwrite(resultFilename,result)  

    end 

end 

fastPCA.m 

function pcaA = fastPCA( A,B, k ) 

[r c] = size(A); 

meanVec = mean(A); 

Z = (A-repmat(meanVec, r, 1)); 

covMatT = Z * Z'; 

[V D] = eigs(covMatT, k); 

V = Z' * V; 

for i=1:k 

     V(:,i)=V(:,i)/norm(V(:,i)); 

end 

pcaA = Z * V; 

pcaA1=[pcaA,B] 

csvwrite('下采样 8 个指标乱序.csv',pcaA1) 
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