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Abstract 

Background 

Mammalian lineages with different diets have different tooth phenotypes, yet the 

genetic basis of tooth variation remains poorly understood. To determine whether the 

evolution of tooth-related genes in different mammalian lineages are related to feeding 

habits, we retrieved genic sequences of seven enamel-related genes (AMELX, AMBN, 

ENAM, AMTN, ODAM, KLK4 and MMP20) in mammals with different feeding habits. 

Results 

We found higher levels of positive selection on enamel-related genes in herbivorous 

lineages than carnivorous lineages. There was significant relaxation of selective 

constraints in the terminal and/or ancestral branches of species without enamel or teeth, 

which may be correlated with their unique feeding habits. In addition, evolutionary rates 

of enamel-related genes were higher in herbivores than carnivores, and seven parallel 

substitution sites were identified among different herbivorous lineages. Interestingly, we 

found a significant association between evolution of enamel-related genes and average 

enamel thickness in primates. 

Conclusion 

Genes involved in enamel composition showed stronger positive selection in 

plant-eating lineages including herbivores and most of omnivores, which is congruent 

with the better developed enamel in these animals that could enhance their ability to eat 

plants while protecting teeth from being eroded by fibers. This is further corroborated 



by the significant association between evolution of enamel-related genes and average 

enamel thickness in primates. In summary, the evolution of enamel-related genes may 

provide insights into the evolution of different feeding habits in mammals. 
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Introduction 

Teeth are responsible for cutting, grinding and crushing food, as well as to attack or 

defend against other animals, playing an important role in the survival and diversity of 

vertebrates [1]. Teeth originated about 460 million years ago (Ma) [2] and evolved into 

diverse morphologies in different vertebrates. Mammals have evolved complex tooth 

patterns, such as the differentiation of incisor, canine, premolar, and molar teeth within 

an individual, and phenotypic variation among different lineages. The diverse shapes of 

teeth suggest that they may contribute to different foraging strategies or feeding habits, 

such as herbivorous, omnivorous and carnivorous diets [3][4]. 

Most mammalian teeth are composed of two main components, enamel and dentine. 

Compared with dentine, enamel is a heavily mineralized and hard [5], making teeth 

strong enough to feed on hard foods, such as plants with high fiber content. Herbivores 

often have ticker layer of enamel compared to carnivores, and considered to play a role 

in different dietary adaptations in mammals. The association between tooth morphology 

and food habits is also observed in species that have lost teeth (baleen whales, pangolins 

and Monotreme) or enamel (sloth, armadillo and aardvark), likely due to the specialized 

feeding habits and strategies [6, 7]. 

Although the association between tooth structure and feeding habits in mammals 

have been suggested, the molecular evolution of enamel-related traits have not well 

explored so far. In this study, seven enamel-related genes that are associated with 

amelogenesis and odontogenesis (AMELX, AMBN, ENAM, AMTN, ODAM, KLK4, 

MMP20) (Table S1) were chosen from representative mammalian species with different 



feeding habitats. We used bioinformatic analyses to test whether evolutionary changes 

in enamel genes are associated with feeding habits in mammals, and provide insights 

into molecular evolution underlying dietary adaptation in mammals. 

Material and methods 

DNA sequence screen and alignment 

The full-length codon DNA sequences (CDS) of seven enamel-related genes were 

extracted from the OrthoMaM v9 [8], Ensembl [9] and NCBI [10] databases. CDS of 

bowhead whale (Balaena mysticetus) and pangolins [Malayan pangolin (Manis javanica) 

and Chinese pangolin (Manis pentadactyla)] were obtained from The Bowhead Whale 

Genome Resource (http://pangolin-genome.um.edu.my/index.php/home/main) and PGD 

database (http://www.bowhead-whale.org/), respectively. For some species, like African 

wild dog (Lycaon pictus) and enamelless/toothless species, we obtained sequences of 

enamel-related genes through blastn searches of mammalian genomes against the well 

annotated human (Homo sapiens) and cow (Bos taurus) enamel-related gene sequences 

as queries. The CDS were first translated into putative amino acid sequences, and then 

were aligned using Muscle [11] and MEGA7.0 [12], and alignment was confirmed 

visually.  

Analysis of selective pressure 

Selective pressure were calculated using the ratio of non-synonymous (dN) to 

synonymous (dS) substitutions (dN/dS or ω) in CODEML of PAML 4.7a [13], where ω < 

1, ω = 1 and ω > 1 indicates the purifying selection, neutral selection and positive 

selection, respectively. We performed the evolutionary analyses with two datasets: the 

complete dataset of all mammalian sequences (dataset I), and a reduced dataset of 

functional mammalian CDS (dataset II). 

Two methods were utilized to detect signatures of positive selection in these genes: 1) 

Branch models allow the  ratio to vary among branches in the phylogeny, and are used 

to detect selective pressures on particular lineages under different models (Model = 

http://pangolin-genome.um.edu.my/index.php/home/main
http://www.bowhead-whale.org/


0,1,2) [14, 15]. One ratio model (Model A, all branches have one ω; Model B, all 

branches have one ω and ω = 1) assigns the same ω ratio for all branches and the free 

ratio model model can accommodate different ω in each branch (model = 1). 2) To 

further test if the positively selected sites are restricted to specific dietary lineages, we 

used the branch-sites model to detect positive selection in lineages with different diets. 

All the positively selected sites were identified by using Bayes Empirical Bayes (BEB) 

analysis [13] with posterior probabilities (PP) ≥ 0.80.  

Identification of convergent sites among distantly related mammals with similar 

diets 

Parallel/convergent sites among mammals with similar diets were identified 

according to methods previously described [16]. The ancestral amino acid sequences of 

each genes were reconstructed using CODEML in PAML [13]. Then, we searched for 

convergent amino acid substitutions from the ancestor branches along paraphyletic 

lineages of species that are herbivorous and carnivorous. The software CONVERG 2 

[17] was used to test whether the observed convergent amino acid substitutions in focal 

branches were fixed randomly or by natural selection. 

Association analysis between root-to-tip ω and tooth phenotype in primates 

In order to test whether there is a potential relationship between the evolutionary rate 

of enamel-related genes and tooth with relative enamel thickness of lower M1 (obtained 

from Shellis et al. [18]), we examined the association in the primate dataset using 

previously described methods by Montgomery et al. [19]. Two ratio model was used to 

calculate the average dN/dS ratios from the ancestral species to each terminal species 

(root-to-tip ω), which is more suitable for regressions against phenotypic data from 

extant species. We then used PGLS (Phylogenetic Generalized Least Squares) analysis 

in the cape package of R to analyze continuous data that has been applied to estimating 

adaptive optima [20] and estimating the relationships among traits. A parameter, 

lambda(λ) value, was estimated by maximum likelihood method to quantitatively 



measure the phylogenetic association level: from zero (no phylogenetic signal) to one 

(significantly phylogenetic signal). 

Results 

We found that the majority of enamel-associated genes in this study were intact, 

however some genes had become pseudogenes in species with enamel-capped teeth, 

such as ODAM in galago (Otolemur garnettii) and in toothed whales, such as bottlenose 

dolphin (Tursiops truncatus), killer whale (Orcinus orca), baiji (Lipotes vexillifer) and 

finless porpoise (N. phocaeniodes). In particular, edentulous species, such as pangolins, 

baleen whales and platypus, commonly had premature stop codons, indels and/or splice 

sites mutations in enamel-related genes (AMELX, AMBN, ENAM, AMTN, ODAM, KLK4 

and MMP20), suggesting pseudogenization. 

Detection of selective pressure 

The detection of dataset I (all mammals) with branch model showed that free ratio 

model was significantly better than one ratio model, suggesting that divergent selective 

pressure operate on different branches (Table 1). Enamel-related genes in herbivorous 

lineages often had branches with ω ratios greater than one. For example, of the 33, 29, 

26 branches for herbivorous, carnivorous and omnivorous lineages within the 

phylogenetic tree (Fig. S1 a-f), the proportion of positively selected branches in 

herbivorous lineages were 20%, 8.6%, 22.9% for AMELX, ENAM and ODAM 

respectively, which was higher than 10.3%, 0, 10.3% in carnivorous lineages and 3.8%, 

23.1%, 9.1% in omnivorous lineages, except for the higher positively selected branch 

percentage of 23.1% in ENAM of omnivorous lineage (Fig. 1). 

 

 



Table 1 Likelihood and omega values estimated under the two ratio branch model of selective pressures on enamel-related genes 

Models and special branches ω -lnL np Models comparison 2Δ (ln L) P-value 

AMBN       

A. All branches have one ω 0.459 22143.515 124    

B. All branches have one ω = 1 1 22429.326 123 B vs A 571.622 0 

C. The terminal branch of Orycteropus afer afer with 

pseudogenized AMBNhas ω2, others have ω1 

ω1=0.454 

ω2=0.894 
22140.403 125 A vs C 6.224 0.013 

D. The terminal branch of Orycteropus afer afer with 

pseudogenized AMBN has ω2 = 1, others have ω1 

ω1=0.454 

ω2=1 
22140.481 124 D vs C 0.156 0.693 

E. The ancestral branch of Pholidota has ω2, others 

have ω1 

ω1=0.450, 

ω2=1.009 
22136.206 125 A vs E 14.618 <0.001 

F. The ancestral branch of Pholidota has ω2 = 1, 

others have ω1 

ω1=0.450 

ω2=1 
22136.207 124 F vs E 0.002 0.964 

ENAM       

A. All branches have one ω 0.472 64566.977 128    

B. All branches have one ω = 1 1 65277.191 127 B vs A 1420.428 0 

C. The terminal branch of Manis javanica with 

pseudogenized ENAMhas ω2, others have ω1 

ω1=0.470 

ω2=1.034 
64563.421 129 A vs C 7.112 0.008 

D. The terminal branch of Manis javanica with 

pseudogenized ENAM has ω2 = 1, others have ω1 

ω1=0.470 

ω2=1 
64563.426 128 D vs C 0.010 0.920 

E. The ancestral branch of Pholidota has ω2, others 

have ω1 

ω1=0.468 

ω2=0.806 
64561.142 129 A vs E 11.670 <0.001 

F. The ancestral branch of Pholidota has ω2 = 1, 

others have ω1 

ω1=0.468 

ω2=1 
64561.979 128 F vs E 1.674 0.196 

G. The terminal branch of Choloepus hoffmanni with ω1=0.469 64562.172 129 A vs G 9.610 0.002 



Models and special branches ω -lnL np Models comparison 2Δ (ln L) P-value 

pseudogenized ENAM has ω2, others have ω1 ω2=0.914 

H. The terminal branch of Choloepus hoffmanni with 

pseudogenized ENAM has ω2 = 1, others have ω1 

ω1=0.469 

ω2=1 
64562.249 128 H vs G 0.154 0.695 

I. The terminal branch ofDasypus novemcinctuswith 

pseudogenized ENAM has ω2, others have ω1 

ω1=0.468 

ω2=0.743 
64562.396 129 A vs I 9.162 0.002 

J. The terminal branch of Dasypus novemcinctus with 

pseudogenized ENAM has ω2 = 1, others have ω1 

ω1=0.467 

ω2=1 
64564.069 128 J vs I 3.346 0.067 

MMP20       

A. All branches have one ω 0.180 20392.241 128    

B. All branches have one ω = 1 1 21668.035 127 B vs A 2551.588 0 

C. The terminal branch of Manis javanica with 

pseudogenized MMP20has ω2, others have ω1 

ω1=0.179 

ω2=0.864 
20388.990 129 A vs C 6.502 0.011 

D. The terminal branch of Manis javanica with 

pseudogenized MMP20 has ω2 = 1, others have ω1 

ω1=0.179 

ω2=1 
20389.011 128 D vs C 0.043 0.836 

E. The ancestral branch of Pholidota has ω2, others 

have ω1 

ω1=0.174 

ω2=0.966 
20372.189 129 A vs E 40.104 <0.001 

F. The ancestral branch of Pholidota has ω2 = 1, 

others have ω1 

ω1=0.174 

ω2=1 
20372.195 128 F vs E 0.012 0.913 
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Fig. 1 a. Summary of positive selection of seven tooth-related genes based on the free ratio model 
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and branch-site model. The small bar on each clade stands for one positively selected branch 

detected within the corresponding clade. b. The proportion of positively selected branches of each 

gene in different dietary lineages where the denominator is the number of branches for each different 

dietary lineage, and numerator is the number of positively selected branches for different dietary 

lineage respectively. 

 

When we used the more stringent branch-site model on dataset II where 

edentulous/enamelless mammals and some pseudogenized lineages were excluded, 

positive selection was observed mainly in herbivorous lineages for AMBN, ENAM, 

AMTN and KLK4. The proportions of positively selected branches in herbivorous 

lineages were generally higher than carnivorous and omnivorous lineages. The 

percentages were 5.7%, 17.1%, 8.1%, 10%, 43.3%, 28.6%, 18.9%, 26.5% in 

herbivorous lineages, which was relatively higher than 0, 3.4%, 0, 7.1%, 24.1%, 7.4%, 

13.8%, 17.2% in carnivorous lineages and 0, 0, 3.8%, 3.6%, 3.8%, 15.4%, 11.5%, 4.2% 

in omnivorous lineages.  

Convergent sites among different dietary mammals  

To determine the molecular convergent evolution in distantly related lineages with 

the same diet, we tested for the convergent amino acid changes in seven enamel-related 

genes. We identified seven parallel nonsynonymous substitution sites. Four of the 

substitutions were in herbivorous lineages for three related genes, ENAM, ODAM and 

MMP20, and three substitutions were identified in ENAM in carnivorous lineages (Fig. 

2 &Table 2). These parallel substitutions deviated significantly (p<0.05) from the 

random expectation. 
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Fig. 2 Parallel amino acid changes on the phylogenetic tree. Amino acid positions are listed in the 

top of colored bars (numbers), and parallel changes at each position are listed in the right part of 
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colored bars corresponding to genes marked in different colors. 

 

Table 2 Statistical tests for parallel nonsynonymous amino acid substitutions among lineages with 

different diets.  

Genes 
Branch 

pair 

Parallel 

substitution 

Observed 

number 

Expected 

number 
P value 

ENAM 

Gli vs. Pae 
753 P-L 

1001 S-P 

5 0 0 
Car vs. Ins 

308 S-N 

621 P-T 

Ins vs. Afr 74 L-M 

ODAM LCP vs. Pae 204 T-I 1 0 0 

MMP20 Gli vs. Pae 251 H-R 1 0 0 

Gli, Glires; Pae, Paenungulata; Car, Carnivora; Ins, Insectivora; Afr, Afroinsectiphilia; LCP, LCA of 

Cetartiodactyla and Perissodactyla; Cet, Cetacean; Pan, Panda 

 

Association between evolution of genetic sequences and enamel thickness in 

primates 

Lastly, we conducted a PGLS analysis of the primate dataset (dataset III, Fig. S2) to 

test whether there is a significant correlation with evolution of enamel genes and enamel 

thickness. The λ value was 0, suggesting that there is no phylogenetic signal in our 

analysis to estimate the association between root-to-tip ω of enamel-related genes and 

average enamel thickness. We also conducted a OLS (Ordinary Least Squares) analysis 

and found a significantly positive regression between root-to-tip ω and average enamel 

thickness at ENAM (R2=0.689, P=0.007), ODAM (R2=0.679, P=0.012), MMP20 

(R2=0.683, P=0.006) and KLK4 (R2=0.718, P=0.004) (Fig. 3).  
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Fig. 3 Associations between root-to-tip ω and average enamel thickness in primates using OLS. 

 

Discussion 

Understanding the evolution of enamel-related genes can improve our understanding 

of phenotypic variation in mammalian teeth and further provide insights into the 

evolutionary mechanism underlying the adaptation to different diets.  

In the present study, we conducted evolutionary genetics analyses and detected a 

series of positively selected sites in seven enamel-related genes in mammals, and found 

interesting findings with regard to gene evolution and its association with teeth variation 

and diet included, We found higher percentage of positively selected branches, 

evidenced by ω values greater than one by branch model or more positively selected 

sites by branch-site models, in enamel-related genes in herbivorous lineages than in 

carnivorous lineages. There was significant convergence between some enamel-related 
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genes between distantly related lineages with the same feeding habits. For example, 

some convergences were found between different herbivorous lineages, such as Glires 

vs Paenungulata at ENAM and MMP20, whereas convergence was found between 

Insectivora vs Carnivora or Afroinsectiphilia. We found significant association between 

root-to-tip ω and average enamel thickness for ENAM (R2=0.689, P=0.007), ODAM 

(R2=0.679, P=0.012), MMP20 (R2=0.683, P=0.006) and KLK4 (R2=0.718, P=0.004) in 

primates, suggesting that these genes may play an important role in controlling the 

thickness of enamel in primates. In enamelless or toothless mammals, enamel-related 

genes often became pseudogenes or non-functional. Taken together, our findings 

suggest that protein-coding changes in enamel genes are involved in tooth variation in 

mammals. Specifically, enamel-related genes appear to be under stronger positive 

selection in herbivores, potentially playing a role in the evolution of feeding on hard 

plants with fibers.  

However, our study includes a limited selection of enamel genes, and a 

comprehensive understanding of the tooth evolution of mammals with different diets 

would require further investigation of more tooth-related genes, including additional 

enamel or dentine-related genes. 
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Table S1 Summary of the seven candidate enamel-related genes used in this study 

Genes A Full name 
Chromosome 

location 
Function and disorders/diseases B 

Formation stage 

(and distribution) 

AMELX X-link Amelogenin Xp22.2 

Amelogenins are involved in biomineralization during tooth enamel development. 

Comprises approximately 80-90% of total enamel protein, Mutations in this gene cause 

X-linked amelogenesis imperfecta. Indeed, enamel is present in AMEL-/- mice, but it turns 

out to severe AI. 

Secretory stage 

(Enamel) 

AMBN Ameloblastin 4q13.3 

The encoded protein may be important in enamel matrix formation and mineralization. 

Comprises roughly 5% of enamel protein matrix. A potential function in the adhesion of the 

ameloblasts. Mutations in this gene may be associated with dentinogenesis imperfect and 

autosomal dominant amelogenesis imperfect.  

Express at the secretory 

stage, diminishes at the 

maturation stage 

(Enamel) 

ENAM Enamelin 4q13.3 

ENAM, the largest protein in the enamel matrix, comprises only 5% of the total EMPs. And 

it is a glycosylated, phosphorylated protein. The intact protein is only observed at the 

mineralization front, suggesting it plays a role in crystal elongation. Diseases associated with 

ENAM include Amelogenesis Imperfecta, Type Ib and Amelogenesis Imperfecta, Type Ic. 

Secretory stage 

(Enamel) 

AMTN Amelotin 4q13.3 

AMTN is specifically expressed in maturation-stage ameloblasts. It may function at basal 

lamina during tooth formation, which is a promoter of calcium phosphate mineralization, 

playing a critical role in the formation of the compact, mineralized, aprismatic enamel 

surface layer during the maturation stage of amelogenesis. 

Maturation stage 

(Enamel) 

ODAM 
Odontogenic, 

ameloblast-associated 
4q13.3 

ODAM probably plays a role in odontogenesis, the complex process that results in the 

initiation and generation of the tooth. May be incorporated in the enamel matrix at the end of 

mineralization process. It also plays a role in attachment of the junctional epithelium to the 

tooth surface. 

Maturation stage 

(Enamel, Milk, Saliva) 

MMP20 
Matrix 

Metalloproteinase 20 
11q22.2 

MMP20 can degrade AMEL, the major protein component of dental enamel matrix, and thus 

thought to function in tooth enamel formation. Mutations of MMP20 and KLK4 both cause 

autosomal recessive AI, a soft characteristics, become a condition that porous enamel 

Throughout the secretory 

stage and into early 

maturation stage 
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Genes A Full name 
Chromosome 

location 
Function and disorders/diseases B 

Formation stage 

(and distribution) 

containing residual proteins (Enamel) 

KLK4 
Kallikrein Related 

Peptidase 4 
19q13.41 

In some tissues its expression is hormonally regulated. After the EMPs formation and 

incrassation, soon hydrolyzed by two main metalloprotease, MMP20 and KLK4, which 

increase mineralization and harden the enamel. Diseases associated with KLK4 include 

Amelogenesis Imperfecta, Type Iia1 and Amelogenesis Imperfecta Hypomaturation Type. 

Starting in transition/early 

maturation and continuing 

through tooth eruption 

(Enamel) 

 

A  Human genes that were chosen as the reference for BLAST search. 

B  Summary of gene functions and related disorders/diseases from NCBI [https://www.ncbi.nlm.nih.gov/gene/] and GeneCard [http://www.genecards.org/]. 
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Fig. S1a-f Distribution of positive selection of each genes on the species tree. Dashed line incidates that data was unavailable for the species.  
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Fig. S2 The primate dataset and phylogeny used for association analysis between root-to-tip ω and 

average enamel thickness. 

 (Images are derived from WiKi website: https://en.wikipedia.org/wiki/Primate; AWD website: 

http://animaldiversity.org/, respectively) 

 

 

https://en.wikipedia.org/wiki/Primate
http://animaldiversity.org/
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