
Judges’ Commentary 395

Judges’ Commentary:
The Fusaro Award for the Sudoku
Problem
Marie Vanisko
Dept. of Mathematics
Carroll College
Helena, MT
mvanisko@carroll.edu

Peter Anspach
National Security Agency
Ft. Meade, MD
anspach@aol.com

Introduction
MCMFoundingDirector Fusaro attributes the competition’s popularity

in part to the challenge of working on practical problems. “Students gen-
erally like a challenge and probably are attracted by the opportunity, for
perhaps the first time in their mathematical lives, to work as a team on a
realistic applied problem,” he says. Themost important aspect of theMCM
is the impact it has on its participants and, as Fusaro puts it, “the confidence
that this experience engenders.”
TheBenFusaroAward for the 2008 SudokuProblemwent to a team from

theUniversity of Puget Sound in Tacoma,Washington. This solution paper
was among the top Meritorious papers and exemplified some outstanding
characteristics:
• it presented a high-quality applicationof the completemodelingprocess;
• it demonstrated noteworthy originality and creativity in the modeling
effort to solve the problem as given; and

• it was well-written, in a clear expository style, making it a pleasure to
read.
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The Problem: Creating Sudoku Puzzles
The teams were asked to develop an algorithm to construct Sudoku

puzzles of varying difficulty and to develop metrics to define a difficulty
level. The algorithm andmetrics were to be extensible to a varying number
of difficulty levels, and the teams were asked to illustrate the algorithm
with at least four difficulty levels. The teams had to guarantee a unique
solution, and they had to analyze the complexity of their algorithm with
the objective of minimizing its complexitywhilemeeting the requirements.

The University of Puget Sound Paper
Mathematical Formulation
Modeling a real-world problem begins by making assumptions that al-

low for the formulation of amathematical description of the problem. In in-
troducing ametric thatwoulddefine the difficulty level of a Sudokupuzzle,
the University of Puget Sound team limited the formal solution techniques
to four standard ones, listed in order of increasing difficulty: Naked Singles
(NS), Hidden Singles (HS), Naked Pairs (NP), and Locked Candidate (LC).
Although this set of solution techniques was more limited than most, the
team’s algorithm lent itself to the consideration of more techniques. In the
solution process, it was assumed that the “average” person would apply
easier techniques before more difficult ones; and for the team’s metric, a
count would be made for the number of times each techniquewas applied,
thusdefininga solutionpath. The teamalso assumed that as a solutionpath
increases in length, the difficulty increases at a linear rate. In cases when
a point was reached where none of the four solution techniques could be
applied, “guess and check” was used, with an altered metric categorized
into cases of no guess and check (standardmetric), one or two guesseswith
checks (double the standard metric), and three or more guesses and checks
(designated as “Fiendish”).

Metric Definition
At this point, the team categorized seven different value categories for

their metric, designating them from Easiest to Fiendish. Although the clar-
ity of the reasoning was commendable, there was some inconsistency in
the formulations for the metric, replacing HS by NS in the later formulas.
Furthermore, the team did not consider the situation where there are no
Hidden Singles (or perhaps Naked Singles). This situation would have
yielded a metric value of zero, indicating the easiest puzzle, when just the
reverse would be true. Although this would be an unlikely occurrence—it
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apparently never occurred in the team’s data samples—in the eyes of the
judges, this was a serious omission.

Validating the Metric
Once the metric was defined, the team applied the next step in the

mathematical modeling process, validating that the metric measured what
it claimed to measure. To do this, the team applied their metric to Su-
doku puzzles with published rankings at two popularWeb sites. The team
showed that the numerical scores computed by their metric corresponded
well to the ratings there.

Generating New Puzzles
With themetric had been defined and validated, the teamundertook the

task of generatingnewpuzzles at specifieddifficulty levels. To do this, they
began by generating solved Sudoku boards, starting with a random seed
of initial hints, and then applied the Knuth technique of Dancing Links.
Although they cited a Web site where the Dancing Links algorithm could
be applied to solve a Sudokupuzzle, it was not clear that the teammembers
understood this technique. After the full board was generated, the team,
as many teams did, proceeded by removing hints, making sure after each
removal stage that there was a unique solution, using the Dancing Links
solution technique.
This team demonstrated the average time to generate random Sudoku

puzzles as a functionof thenumberof initial hints and thenwent on to show
the relationship between the proportion of puzzles generated at each level
and the number of initial hints. Their puzzle generations and resulting
observations about the role of the number of initial hints, coupled with
the configuration of those hints, were noteworthy. The team found that
by constraining the initial configuration of the Sudoku boards, they could
control the proportion of puzzles produced at a given difficulty level.

Recognizing Limitations of the Model
Recognizing the limitations of a model is an important last step in the

completion of the modeling process. The team recognized that their metric
is less sensitive to changes in difficulty as the difficulty level increases, and
also that, in reality, their metric does not perfectly mimic human behavior.
As mentioned earlier, they observed how their metric could be extended to
encompass additional solution techniques.
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Conclusion
Despite a few deficiencies, the paper was an excellent illustration of

the modeling process. The judges felt that this was a fine example of the
fact that mathematical modeling can be done at many levels. The team
is to be congratulated on their thoroughness, their clarity, and using the
mathematics they knew to create their own model to define a metric and
apply it successfully.
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