

Cambridge Chemistry Challenge Lower 6th

June 2016

Marking scheme for teachers

(please also read the additional instructions)

1(a) oxidation states of titanium in ilmenite (FeTiO₃):

Ti(III) or Ti(IV); also accept +3 or +4

1

1

1

1

blank

1(b)

(i) reaction between rutile (TiO₂), chlorine and carbon:

$$TiO_2(s) + 2Cl_2(g) + 2C(s)$$
 TiCl₄(l) + 2CO(g) \checkmark [Do not penalise lack of state symbols]

(ii) reaction between ilmenite (FeTiO₃), chlorine and carbon:

$$2FeTiO_3(s) + 7Cl_2(g) + 6C(s)$$
 \longrightarrow $2FeCl_3(s) + 2TiCl_4(l) + 6CO(g)$

[Half quantities accepted. Do not penalise lack of state symbols]

1(c) type of structure and bonding:

ionic giant covalent

simple molecular (simple covalent)

1(d) average bond strength TiCl₄:

$$Ti(s) + 2Cl2(g) + O2(g)$$

$$\Delta_{f}H^{\circ}(TiCl_{4}(g)) = \Delta_{f}H^{\circ}(TiO_{2}(s)) - \Delta H^{\circ}$$

$$= -939 - (-175) \text{ kJ mol}^{-1}$$

$$= -764 \text{ kJ mol}^{-1}$$

V

4 x bond strength (b.s.) in TiCl₄(g)

TiCl₄(g)
$$\longrightarrow$$
 Ti(g) + 4Cl(g)
$$\Delta_{f}H^{\circ}(\text{TiCl}_{4}(g))$$

$$\Delta_{at}H^{\circ}(\text{Ti}(s))$$
 + 2 x bond strength (Cl₂(g))

4 x b.s. in TiCl₄(g) =
$$\Delta_{at}H^{\circ}(Ti(s)) + 2$$
 x b.s. Cl₂(g) – $\Delta_{f}H^{\circ}(TiCl_{4}(g))$

$$= 473 + 2 \times 242 - (-764) \text{ kJ mol}^{-1}$$

 $= 1721 \text{ kJ mol}^{-1}$

average bond strength in TiCl₄ is therefore: 430 kJ mol⁻¹ (3 sig. fig.)

Page total 8

Page 2

4

1

1

2

1

2

1

- 1(e)
 - (i) dot and cross diagram for NO₂

[accept all chemically reasonable diagrams]

(ii) bond angle in NO₂:

90° 105° 109° 115° 120° 135° 180°
[No ECE from part (i)]

[No ECF from part (i)]

1(f)
(i) reaction between NO₂ and HO•:

the product is named: Nitric Acid

(ii) reaction between superoxide and NO:

 $NO + O_2^- \longrightarrow NO_3^- \checkmark$

(iii) net reaction with species being reduced underlined:

 $H_2O + O_2 + NO_2 + NO \longrightarrow HNO_3 + H^+ + NO_3^- \checkmark \checkmark$ [2HNO₃ accepted as product. 1 mark for equation; 1 for underlined]

1(g) the reaction for the formation of titanium(III) chloride is:

 $2\text{TiCl}_4(I) + \text{H}_2(g)$ \longrightarrow $2\text{TiCl}_3(s) + 2\text{HCl}(g)$ [Half quantities accepted.]

- 1(h)
 - (i) what happens to the titanium:

oxidation reduction disproportionation nothing

Page total

1

Page 3

1(h)

(ii) the standard entropy change is:

Positive

One of the products is gaseous.

2

(iii) the position of equilibrium would:

Move towards the reactants OR shift to the left hand side.

The forward reaction is exothermic OR the reverse reaction is endothermic.

1

1(i) the standard enthalpy and entropy changes are:

The gradient of the line is equal to $-\frac{\Delta H^{\circ}}{R}$

$$-\frac{\Delta H^{\circ}}{R} = \frac{-12 - (-9)}{0.001572 - 0.001412} = \frac{-3}{0.000016} = -18750$$

$$\Delta H^{\circ} = 155.9 \text{ kJ mol}^{-1} \checkmark$$

Substitute the value for $-\Delta H^{\circ}$ to find ΔS° : $-12 = -18750 \times 0.001572 + \frac{\Delta S^{\circ}}{R}$

$$\frac{\Delta S^{\circ}}{R} = 17.475$$

$$\Delta S^{\circ} = 145.3 \text{ J mol}^{-1} \text{ K}^{-1} \sqrt{\sqrt{}}$$

[Two marks for value, the third if the units are correct]

5

1(k)

ionic

giant covalent simple molecular (simple covalent)

1

2(a) molecular formula of Pyrethrin I:

C21H28O3

2(b)

(i) moles of bromine reacting with 500 mg Pyrethrin I:

Number of moles of Pyrethrin I =
$$\frac{0.5}{328.4}$$
 = 0.001523 moles \checkmark

There are 4 double bonds in Pyrethrin I

Number of moles of bromine reacting = $4 \times 0.001523 = 0.00609$ moles

2

1

2

2

blank

1

(ii) volume of bromine water reacting:

Volume of bromine water =
$$\frac{0.00609013}{0.05}$$
 = 0.122 dm³ = 122 cm³

2(c)

(i) concentration of Cypermethrin in the sample:

[Cypermethrin] =
$$\frac{\text{Peak area} - 2.403}{44.547} = \frac{4.8 - 2.403}{44.547} = 0.054 \,\mu\text{mol dm}^{-3}$$

[Accept correct answers given in mol dm⁻³ or mmol dm⁻³]

(ii) mass of Cypermethrin in the sample:

Mass = moles of Cypermethrin x Mr Cypermethrin

- = [Cypermethrin] x volume of sample x Mr Cypermethrin
- $= 0.0538 \times 10^{-6} \times 15 \times 10^{-3} \times 416.3$

= 3.36×10^{-7} g (equivalent to 3.36×10^{-4} mg or 0.336μ g or 336μ g)

[accept error carried forward; 1 mark if answer is out by a factor of 10^3]

(iii) number of blueberries consumed without exceeding the MRL:

A 15 kg child can safely consume $0.02 \times 15 = 0.3 \text{ mg}$ Cypermethrin per day. Assuming all blueberries contain an equal amount of Cypermethrin, then each blueberry contains (336/4) = 84 ng of Cypermethrin.

No. of blueberries to reach MRL $(0.3/84 \times 10^{-6}) = 3571.3$ blueberries. A 15 kg child could eat 3571 blueberries without exceeding the MRL.

[Accept error carried forward;

award 1 mark if only the safe mass of Cypermethrin per day is given]

2

Page total 10

2(d) ways of forming Br₂:

⁷⁹Br⁸¹Br 81Br81Br ⁷⁹Br⁷⁹Br ⁸¹Br⁷⁹Br [do not penalise if only one of ⁷⁹Br⁸¹Br or ⁸¹Br⁷⁹Br is given] leave blank 1

1

1

2

2(e) Spectrum matching that of Br₂:

Spectrum C Spectrum D Spectrum A Spectrum B 2(f)

m/z values of Cl₂: (i)

70,72 & 74

(ii) intensities of peaks corresponding to Cl₂:

> 9:6:1 (or as percentages 56.25: 37.5: 6.25) [award 2 or 0]

2(g) m/z values for molecular ions and their corresponding ratios.

Cypermethrin

415, 417 & 419 9:6:1 (or 56.25 : 37.5 : 6.25)

Deltamethrin

503, 505 & 507 1:2:1 (or 25:50:25)

Tralomethrin

661, 663, 665, 667 & 669 1:4:6:4:1 or 6.25:25:37.5:25:6.25

1

2(h)

(i) volume of Deltamethrin solution:

 $12.5 \times 55 = 687.5 \text{ mg}$ of Deltamethrin will be needed on a 12.5 m² net. Multiply mass in grams by 10 to give volume in cm³: 6.9 cm³

2(j) products of ester hydrolysis:

3

Page total 13

2(k) Four possible products:

2(I)

- (i) Circle the correct structure in your answer above
- **/**

leave

blank

4

1

1

(ii) The reagent is:

√

2(m) Structures:

5

Page total 11