

Cambridge Chemistry Challenge Lower 6th

June 2013

Marking scheme for teachers

(please also read the additional instructions)

	p2	рЗ	p4	р5	p6	p7	p8	р9	Total
mark	7	7	7	8	5	11	6	9	60

1

2

1

1(a) C (34.6 / 12.01) : H (3.85 / 1.008) : O (61.5 / 16.00)

2.88 : 3.82 : 3.84 1 : 1.33 : 1.33 3 : 4 : 4

empirical formua of A

C₃H₄O₄ ✓

C₃H₄O₄

(b) functional group contained in A

carboxylic acid [allow COOH]

[accept C=O and O-H]

(c)(i) moles of A = (8.00/104) x (25/1000) = 0.00192 mol moles of NaOH = (0.200/1000) x 19.2 = 0.00384 mol \checkmark

∴ moles of NaOH per mole of A
= 0.00384 / 0.00192
= 2

number of moles

2

√

(c)(ii) structure of A:

(d) structure of B:

1

1(e) structure of ion C

structure of D

(f) structure of E

2

- molecular formula for phenylbutazone: (g)
- $C_{19}H_{20}N_2O_2$

1

The M_r of phenylbutazone is 309. (h) (i)

(ii) The molecule fragments.

Naturally occurring carbon contains a small proportion of ¹³C. (iii)

Naturally occurring hydrogen contains (iv) a large proportion of deuterium (²H).

One of the nitrogen atoms has been protonated. (v)

/
√

1 mark for each correct -1 mark for each other box ticked down to zero.

Page total 7

1

1

2

1(i) structure of fragment at m/z 252:

structure of other fragment:

(j) number of burgers needed:

mass of PB per burger = $4.0 \times 10^{-9} \times 250 \text{ g} = 1.0 \times 10^{-6} \text{ g}$ therapeutic dose = $(3.0 / 1000) \times 75 \text{ g} = 0.225 \text{ g}$ \therefore number of burgers needed = $(0.225 / 1.0 \times 10^{-6}) = 225,000$ [allow two or three sig. figs.]

(k)(i) mass of azobenzene produced:

reading from graph, absorption of 0.997 corresponds to concentration of 10.4 μg / cm³ of heptane [allow between 10.0 - 10.5 μg / cm³]

∴ in 10 cm³ of heptane extracted from the blood 10.4 × 10 μ g = 104 μ g or 1.04 × 10⁻⁴ g

[allow between 1.00 - 1.05 \times 10⁻⁴ g]

2

Page total 7

1

1(k)(ii) mass of phenylbutazone oxidised:

RMM of azobenzene = 182.22

RMM of phenylbutazone = 308.55

moles of azobenzene =
$$\frac{1.04 \times 10^{-4}}{182.22}$$
 (= 5.71 × 10⁻⁷)

∴ mass of phenylbutazone =
$$\frac{308.55 \times 1.04 \times 10^{-4}}{182.22}$$

$$= 1.76 \times 10^{-4} \, g \, \text{ or } 176 \, \mu g$$

[allow e.c.f. from part (i)]

(iii) concentration of phenylbutazone in the blood:

moles of azobenzene = moles of phenylbutazone in 10 cm³ blood

$$=\frac{1.04\times10^{-4}}{182.22}$$

.. concentration of phenylbutazone in the blood

$$= 100 \times \frac{1.04 \times 10^{-4}}{182.22} = \underbrace{5.7 \times 10^{-5} \text{ mol dm}^{-3}}_{}$$

[allow e.c.f.]

(I) number of peaks in carbon NMR spectra:

1,2-dimethylbenzene

4

1,3-dimethylbenzene

1,4-dimethylbenzene

3

(m) number of peaks in carbon NMR spectra of phenylbutazone:

10

2

3

Page total 8

1(n)(i) atom introduced:

oxygen 🗸

(n)(ii) structure of metabolite:

3 marks if OH group drawn on correct position in one ring
[1 mark if OH drawn on other position on benzene ring
or if oxygen atom inserted to give a reasonable structure]

(o) missing letters in scrabble answer:

O X Y P H₄ E₁ N B₃ U₁ T₁ A Z O₁ N₁ E₁

1 mark if all correct

3

blank

1

leave blank

2

1

2

2

2

2(a) standard enthalpy change:

$$\Delta H^{\circ} = (-89.10) + 2(-286.0) - (-121.0) - 4(-4.187)$$

= -523.4 kJ mol⁻¹

[1 mark if correct number but wrong sign]

(b)(i) equation:

$$CH_4(aq) + 2O_2(aq) \longrightarrow CO_2(aq) + 2H_2O(I)$$
[no penalty if missing state symbols]

(b)(ii) standard enthalpy change:

$$\Delta H^{\circ} = (-121.0) + 2(-286.0) - (-89.10) - 2(-11.72)$$

= -580.5 kJ mol⁻¹

[1 mark if correct number but wrong sign]

$$NO_2^-$$

formula of nitrate(V):

(c)(ii) structure of nitrate(III):

structure of nitrate(V):

bond angle in nitrate(III):

bond angle in nitrate(V):

1

2

2(c)(iii) equation between iodide and nitrate(III) in acid:

$$2NO_2^-(aq) + 6I^-(aq) + 8H^+(aq) \longrightarrow N_2(g) + 3I_2(aq) + 4H_2O(I)$$

[no penalty if missing state symbols]

(c)(v) equation between sulfate(IV) and and iodine in acid:

$$SO_3^{2-}(aq) + I_2(aq) + H_2O(I) \longrightarrow SO_4^{2-}(aq) + 2I^{-}(aq) + 2H^{+}(aq)$$

[no penalty if missing state symbols]

- (ii) A neutron in the ⁴⁰K decays into a proton, a positron (positive electron) and a neutrino.
- (iii) A proton in the ⁴⁰K decays into a neutron, a positron (positive electron) and a neutrino.
- (iv) A neutron in the ⁴⁰K decays into a proton, an electron, and a neutrino.
- (v) A proton in the ⁴⁰K captures an electron, and decays into a neutron and a neutrino.

1 mark for each correct-1 mark for each other box ticked down to zero.

1

1

2

2(e)(i) atoms of ⁴⁰Ar in 1cm³ of water:

1 cm³ water contains 0.0445 cm³ of ⁴⁰Ar

$$= 0.0445 \times 6.022 \times 10^{23} = 1.20 \times 10^{18} \text{ atoms}$$

(e)(ii) mass of rock:

since 1.0% by volume of rock is water

100 cm³ of rock contains 1.0 cm³ of water = 270 g

(e)(iii) mass of potassium:

mass of potassium = 2.0% by mass of rock = $270 \times (2.0/100) = 5.4$ g

(e)(iv) atoms of ⁴⁰K:

moles of potassium in rock = 5.4 / 39.102 = 0.138moles of 40 K is $(0.0117 / 100) \times 0.138 = 1.62 \times 10^{-5}$

 \therefore number of atoms of $^{40}K =$

$$(5.4/39.102) \times (0.0117/100) \times 6.022 \times 10^{23} = 9.7 \times 10^{18}$$

[if assumed proportion of 40 K is 0.0117% by mass, answer comes out as 9.5 \times 10¹⁸ and 1 mark should be given]

(f) age of sample:

$$N_{40\text{Ar}} = 0.105 \times N_{40\text{K}} \times (e^{\lambda t} - 1)$$

rearranging:

$$e^{\lambda t} = \frac{N_{40\text{Ar}}}{0.105 \times N_{40\text{K}}} + 1 \qquad \therefore t = \frac{1}{\lambda} \times \ln \left(\frac{N_{40\text{Ar}}}{0.105 \times N_{40\text{K}}} + 1 \right)$$

$$\therefore t = \frac{1}{5.54 \times 10^{-10}} \times \ln \left(\frac{1.2 \times 10^{18}}{0.105 \times 9.73 \times 10^{18}} + 1 \right) = 1.4 \times 10^{9} \text{ years}$$

$$= 1.4 \text{ billion years}$$

[give 2 marks if equation has been correctly (and usefully) rearranged in some form]

Page total 9