

Cambridge Chemistry Challenge Lower 6th

June 2012

Marking scheme for teachers (please also read the additional instructions)

Page 2

Page 3

1(g) concentration of pure water:

RMM of $H_2O = (2 \times 1.008) + 16.00 = 18.016$ 1 dm³ water = 1.0 kg = 1000 / 18.016 mol

concentration = 55.5 mol dm⁻³ \checkmark

(h) mass of acid:

 $[H^+] = 10^{18} \text{ mol dm}^{-3}$

so 1 dm³ has a mass of $10^{18} \times 1$ g

 5 cm^3 has a mass of

 $(10^{18} / 1000) \times 5 g = 5 \times 10^{15} g$

[Note this is more dense than a neutron star which essentially consists of touching nucleons. An additional idea might be to calculate the density of a single proton.] 1

leave blank

2

Page 8