

Cambridge Chemistry Challenge Lower 6th

June 2011

Marking scheme for teachers

(please also read the additional instructions)

4

2

2

1

(d) (i) Equation for combusion:

$$C_3H_6(g) + 9/2 O_2(g) \longrightarrow 3CO_2(g) + 3H_2O(g)$$
[quantities may be doubled]

(ii) Standard enthalpy of formation of A:

$$[9/2 \ O_{2}(g)] + 3C(s) + 3H_{2}(g) \xrightarrow{\Delta_{f}H^{\oplus}(A)} + [9/2 \ O_{2}(g)]$$

$$3(-393.5) \xrightarrow{3(-241.8)} -2058$$

$$3CO_{2}(g) + 3H_{2}O(g)$$

$$\Delta_{f}H^{\oplus}(A) = 2058 - 3(393.5) - 3(241.8) = +152.1 \text{ kJ mol}^{-1} \checkmark \checkmark$$
[one mark if correct value but wrong sign;

also one mark if equation is doubled and value is doubled]

(d) (iii) Standard enthalpy of formation of B:

$$\Delta_f H^{\circ}(A) = 2091 - 3(393.5) - 3(241.8) = +185.1 \text{ kJ mol}^{-1}$$
 [one mark if correct value but wrong sign; also one mark if equation is doubled and value is doubled]

2

(e) Standard enthalpy change for reaction $B \rightarrow A$:

$$\Delta_r H^{\oplus} = 152.1 - 185.1 = -33 \text{ kJ mol}^{-1}$$

[or
$$\Delta_r H^{\circ} = -2081 - (-2058) = -33 \text{ kJ mol}^{-1}$$
]

(f) (i) Structure(s) of A with one D.

4

[+1 for each correct structure -1 for any additional repetition]

(ii) Structure(s) of B with one D.

1

[+1 for correct structure,0 if more than one structure is drawn]

(g) Structure of A1:

(h) Structures of X1 and X2:

[answers can be either way round]

1

2

2

1

2

1

(I) Structure of A7:

(m)		NO plane of symmetry	Plane of symmetry
		Structure(s)	Structure(s)
	NO rotational symmetry		D D
		2 marks for each correct structure in the correct box 1 mark for a correct structure but in the wrong box (up t -1 mark for any duplicate structure (down to zero)	
		Structure(s)	Structure(s)
	Rotational symmetry	(enantiomers)	D D
		, ,	

8

Total 38

2

1

2

1

3

1

- 2(a) (i) oxidation state (ii) shape:

 +4

 octahedral
- (b)(i) Formula for W

 NaF

 ✓
 - (ii) Formula for X shape:

 SiF₄ tetrahedral
 - (iii) Equation for formation of W and X $Na_2SiF_6(s) \longrightarrow 2NaF(s) + SiF_4(g)$
- Formula for Y Formula for Z $CaF_{2} \longrightarrow SiH_{4} \longrightarrow$ Equation for formation of Y and Z $2CaH_{2}(s) + SiF_{4}(g) \longrightarrow 2CaF_{2}(s) + SiH_{4}(g) \longrightarrow$
 - (ii) Equation for combustion of Z: $SiH_4(g) + 2O_2(g) \longrightarrow SiO_2(s) + 2H_2O(l)$
- Equation for decomposition of Z $SiH_4(g) \longrightarrow Si(s) + 2H_2(g) \checkmark$

(e)(i)

calculate n

$$n = (8 \times 1/8) + (6 \times 1/2) + 4 = 8$$

(ii)

number of atoms in sphere

n atoms in
$$a^3 \text{ pm}^3 \equiv a^3 \times 10^{-36} \text{ m}^3$$

volume of sphere =
$$V \text{ cm}^3 \equiv V \times 10^{-6} \text{ m}^3$$

atoms in volume V =
$$\frac{V \text{ n}}{a^3} \times 10^{30} \text{ }$$

2 marks for expression 3rd mark if with factor of $\times 10^{30}$

(iii)

Expression for Avogadro constant

atoms in m g =
$$\frac{V \text{ n}}{a^3} \times 10^{30}$$

atoms in 1 g =
$$\frac{V \text{ n} \times 10^{30}}{\text{ma}^3}$$

atoms in Ar g =
$$\frac{A_r V n}{m a^3} \times 10^{30}$$

2 marks for expression 3rd mark if with factor of $\times 10^{30}$

2

3

$$xy = \sqrt{\frac{a^2}{4} + \frac{a^2}{4}} = \frac{a}{\sqrt{2}}$$

$$yz = \sqrt{\frac{a^2}{2} + \frac{a^2}{4}} = \sqrt{\frac{3}{2}}a$$

yz = twice bond length

Si-Si bond length =
$$\sqrt{\frac{3}{4}}$$
 pm (=0.433a pm)

[3 marks if correct but no unit; 2 marks for twice the answer; 1 mark for some Pythagorean working but wrong answer]

(g) A_r for silicon

$$\begin{split} A_r &= (1-41.2\times 10^{-6}\ -1.3\times 10^{-6}\)\times 27.97692653 \\ &\quad + (\ 41.2\times 10^{-6}\times 28.97649470\) \\ &\quad + (\ 1.3\times 10^{-6}\times 29.97377017\) \end{split}$$

[1 mark for some correct working but wrong answer]

(h) **Calculated value for Avogadro constant**

putting values into expression gives

$$6.02214096 \times 10^{23}$$

1 mark if this answer. No carry forward.

4

2