

S.T. Yau High School Science Award

Research Report

The Team

Registration Number:

Name of team member: Claire Wang
School: Phillips Academy Andover
City, Country: Andover, MA

Name of team member: Yihao Huang
School: Phillips Academy Andover
City, Country: Andover, MA

Title of Research Report

Efficient Algorithm for Parallel Bi-core Decomposition

Date

September 15, 2021

1

Efficient Algorithm for Parallel Bi-core Decomposition

CLAIRE WANG, Phillips Academy, cwang23@andover.edu
YIHAO HUANG, Phillips Academy, yhuang23@andover.edu

Abstract

Many real-world statistics and problems can be modeled by graphs, such as user-product net-

works, social networks, and biological networks. Identifying dense regions within these graphs is use-

ful for product-recommendation, spam identification, and protein-function discovery. 𝑘-core decom-

position is a fundamental graph theory problem that discovers dense substructures of a graph. How-

ever, 𝑘-core decomposition does not directly apply to bipartite graphs, which are graphs that model the

connections between two disjoint sets of entities. Bipartite graphs are widely used to model author-

ship, affiliations, and gene-disease associations, to name a few. In this paper, we solve the analog of

the𝑘-core decomposition problem, which is the bi-core decomposition problem. Existing sequential bi-

core decomposition algorithms are not scalable to large-scale bipartite graphs with hundreds of mil-

lions of edges. Therefore, in this paper, we develop a theoretically efficient parallel bi-core decompo-

sition algorithm. Compared to existing parallel algorithms, our algorithm reduces the length of the

longest dependency path of the computational graph which measures the asymptotic bound of a paral-

lel algorithm given sufficiently many threads. We provide an optimized parallel implementation that is

scalable and fast. Using 30threads, our parallel algorithm achieves up to 34.8x self-relative speedup.

Our code achieves up to 4.1x speedup compared with the best existing parallel algorithm.

Additional Key Words and Phrases: parallel computing, bi-core, bipartite graphs, k-core, graph theory

2

Acknowledgements

Jessica Shi, CSAIL, jeshi@mit.edu
Julian Shun, CSAIL, jshun@mit.edu

3

Commitments on Academic Honesty and Integrity

We hereby declare that we

1. are fully committed to the principle of honesty, integrity and fair play throughout the

competition.
2. actually perform the research work ourselves and thus truly understand the content of the

work.
3. observe the common standard of academic integrity adopted by most journals and degree

theses.
4. have declared all the assistance and contribution we have received from any personnel,

agency, institution, etc. for the research work.
5. undertake to avoid getting in touch with assessment panel members in a way that may lead to

direct or indirect conflict of interest.
6. undertake to avoid any interaction with assessment panel members that would undermine the

neutrality of the panel member and fairness of the assessment process.
7. observe the safety regulations of the laboratory(ies) where we conduct the experiment(s), if

applicable.
8. observe all rules and regulations of the competition.
9. agree that the decision of YHSA is final in all matters related to the competition.

We understand and agree that failure to honour the above commitments may lead to
disqualification from the competition and/or removal of reward, if applicable; that any unethical
deeds, if found, will be disclosed to the school principal of team member(s) and relevant parties if
deemed necessary; and that the decision of YHSA is final and no appeal will be accepted.

(Signatures of full team below)

X. Claire Wang
Name of team member:

X. Yihao Huang
Name of team member:

X
Name of team member:

X. Jessica Shi
Name of supervising teacher:

Efficient Algorithm for Parallel Bi-core Decomposition

YIHAO HUANG, Phillips Academy, yhuang23@andover.edu

CLAIRE WANG, Phillips Academy, cwang23@andover.edu

CONTENTS

Contents 1

1 Introduction 1

2 Related Work 3

3 Preliminaries 3

4 Sequential Bi-core Decomposition 5

4.1 Sequential Peeling 5

4.2 Computation Sharing 6

4.3 Analysis and Implementation Details 7

5 Parallel bi-core Decomposition Algorithm 7

5.1 Parallel Bucketing and Exponential Search 7

5.2 Parallel Aggregated-Peeling 8

5.3 Parallel Bi-core Decomposition 9

5.4 Peeling Space Pruning Optimization 10

5.5 Implementation and Other Optimizations 12

6 Experiments 13

7 Conclusion 16

References 16

1 INTRODUCTION

The problem of discovering dense clusters and subgraphs in networks is fundamental in large-scale graph analysis. It is

used for community search in social networks, cluster word-documents, improving advertising and marketing, detect

frauds, and analyze protein-gene-disease relations in bioinformatics and medicine [32, 40]. Classical problems for dense

subgraph discovery include 𝑘-core [30] decomposition, 𝑘-truss [14], and nucleus decomposition [35]. However, these

algorithms apply to general graphs, and do not take advantage of the bipartite structures that exist in many real-world

graphs.

A bipartite graph𝐺 consists of two mutually exclusive sets of vertices𝑈 ,𝑉 and edges that connect between them. They

model the affiliation between two distinct types of entities. Notably, bipartite graphs have been used to model authorship

networks, group membership networks [51], peer-to-peer exchange networks, gene-disease associations, protein-protein

interactions, and enzyme-reaction links [20–22, 32].

Traditional dense substructure analysis on bipartite graphs projects bipartite graphs to unipartite co-occurrence networks

by connecting two vertices if they share a neighbor, creating an edge. Then, 𝑘-core decomposition or a similar analysis is
1

2 Yihao Huang and Claire Wang

performed on the unipartite co-occurrence network. Co-occurrence network analysis is often inaccurate and memory-

inefficient [40]. Therefore, bipartite analogs for classic unipartite dense subgraph discovery algorithms are crucial for

efficient and accurate dense substructure analysis on bipartite graphs.

Given the practical values of bipartite graphs, generalizing problems and algorithms for unipartite graphs to bipartite

graphs has become a recent popular direction of research [49]. The bipartite equivalent of 𝑘-core (bi-core) was introduced

by Ahmed et al. [8]. A (𝛼, 𝛽)-core (or a bi-core) is the maximal subgraph where the induced degrees of all vertices in the

first partition is ≥ 𝛼 and the induced degrees of all vertices in the second partition is ≥ 𝛽.

Applications. Bi-core decomposition has been applied to recommendation systems, fraud detection, and community

search [10, 19, 50].

(1) Fraudster Detection Bi-core decomposition can be applied to a social network graph for fraudster/spammer

detection by considering the bipartite graph connecting user accounts to posts they like/dislike/upvote/downvote.

A common strategy of fraudulent online influence campaigns is creating a large number of fake social media

accounts to like/dislike specific posts or online products in order to manipulate public opinions. Since these

fake accounts are generally created to like/dislike a small number of posts; those posts generally receives lots of

likes/dislikes. Therefore, a fraudulent influence campaign can be identified by identifying (𝛼, 𝛽)-cores with a low

𝛼 value (corresponding to each user’s degree) and a high 𝛽 value (corresponding to each post/product’s degree).

(2) Graph Visualization Algarra et al. introduced 𝑘-core decomposition for visualizing bipartite biological networks

modeling gene-protein, host-pathogen, and predator-prey interactions. 𝑘-core peeling discovers dense communities

within the bipartite graph, which represents communities of generalists (species that interact with many other

species; for example, predators that prey on many species). These dense substructures help researchers identify

important species in an ecosystem. Alternative to 𝑘-core peeling, bi-core peeling can also be applied to the problem

and can potentially generate more accurate representations since bi-core decomposition addresses the imbalance

between the two entities. For example, there are possibly more predator species than prey species, so intuitively,

the number of degrees a prey specie needs to be considered a generalist should be lower than that of a predator

specie [33].

(3) Community Search Wang et al. applied bi-core decomposition to compute (𝛼, 𝛽)-community search. Specifically,

their algorithm prunes the searching space by first computing the (𝛼, 𝛽)-core and only searching the (𝛼, 𝛽)-
community within it.

Liu et al. [29] proposed an efficient sequential index-based approach for bi-core decomposition. Their algorithm runs

in 𝑂 (𝑚
3
2), meaning that asymptotically, its runtime is bounded by the expression𝑚

3
2 . The algorithm uses memory linear

to𝑚. Liu et al. leveraged computation-sharing across different rounds of peeling to reduce the time complexity from

𝑂 (𝑛2) of earlier works to 𝑂 (𝑚
3
2) [12, 29]. However, the sequential nature of the algorithm limits its application to large

real-world graphs.

Parallelism is increasingly vital for faster processing in as it becomes increasingly difficult to increase CPU clock

speeds [42]. As the number of cores in a processor grows, shared-memory parallelism, in particular, becomes increasingly

important [45].

We develop in this paper a shared-memory parallel bi-core decomposition algorithm. Our algorithm uses a peeling-

based approach, where in each round of peeling, we remove all vertices with the lowest induced degree concurrently

until the graph is empty. We prove that our algorithm achieves 𝑂 (𝑚
3
2) work, meaning that the total number of operations

performed is asymptotically bounded by the expression𝑚
3
2 . Our algorithm is work-efficient, meaning that it has the same

Efficient Algorithm for Parallel Bi-core Decomposition 3

work complexity as the best sequential algorithm. Our algorithm achieves 𝑂 (𝜌 log(𝑛)) w.h.p. span, meaning that the

length of the longest dependency path in the computational graph is bounded asymptotically by the expression 𝜌 log(𝑛).
𝜌 is the bi-core peeling complexity; it represents the maximum number of rounds of peeling. Our algorithm uses 𝑂 (𝑚)
space. Note that the parallel algorithm introduced by Liu et al has a span of 𝑂 (𝑚). Since 𝜌 ≤ 𝑛 theoretically and is

generally much smaller than 𝑛 in practice as shown in Table 2, 𝑂 (𝜌 log(𝑛)) is a significantly better span than 𝑂 (𝑚).
We furthermore implement our parallel algorithm and introduce optimizations to it. Finally, we present a comprehensive

experimental evaluation of our algorithm on real-world graphs that contain up to hundreds of millions of edges. We

compare our experimental results against Liu et al.’s algorithm, which we use as our baseline. Our algorithm achieves

up to 4.1x speedup over the parallel baseline. Further, it achieves up to 16.6-35.4x speedup over the sequential baseline

when using 24 threads. We demonstrate good parallel scalability over different numbers of threads, and we provide an

evaluation of the bi-core peeling complexity as it relates to our running times.

In summary, the contributions of our work are as follows.

(1) We introduce the first theoretically efficient shared-memory parallel bi-core decomposition algorithm.

(2) We introduce optimizations and provide an implementation of our parallel bi-core decomposition algorithm, which

is publicly available at https://github.com/ClaireBookworm/gbbs.

(3) We perform extensive empirical evaluations of our algorithm.

2 RELATED WORK

𝑘-core Decomposition. The bi-core decomposition problem is an extension of the 𝑘-core decomposition problem, which

is well-studied, with the first efficient sequential algorithm given by Matula and Beck [30]. Parallel algorithms, both

distributed memory [31] and shared memory [17], have also been developed (e.g., [16–18, 25, 31, 43]).

Other Dense Subgraph Decomposition. 𝑘-clique peeling, 𝑘-truss, and (𝑟, 𝑠)-nucleus decomposition all discover dense

substructures in a graph, similar to the 𝑘-core decomposition. 𝑘-clique peeling [13, 44] peels vertices based on the number

of incident 𝑘-cliques and is a generalization of 𝑘-core peeling; 𝑘-truss peeling [9, 14, 26, 38, 46, 52, 53] peels edges based

on their number of incident triangles; (𝑟, 𝑠)-nucleus decomposition [37, 39] further generalizes both 𝑘-core peeling and

𝑘-truss, by peeling 𝑟 -cliques based on their number of incident 𝑠-cliques. The MIT GraphChallenge [23]

Generalization of Decomposition Algorithms to Bipartite Graphs. Another direction of work focuses on generalizing

unipartite peeling algorithms to bipartite graphs. Zou [54] and Sarıyüce and Pinar [36] generalized 𝑘-clique and 𝑘-truss

peeling to 𝑘-tip decomposition and 𝑘-wing decomposition. 𝐾-tip peeling peels vertices based on the number of incident

(2, 2)-bicliques; 𝑘-wing decomposition peels edges instead based on the number of incident (2, 2)-bicliques. Multiple

sequential [34, 36, 47–49, 54] and parallel [28, 41] algorithms have been proposed for tip and wing decomposition

problems. Ahmed et al. proposed the (𝛼, 𝛽)-core decomposition problem, or the bi-core decomposition problem and gave

the first sequential bi-core peeling algorithm [8]. Then, Cerinšek and Batagelj gave the first sequential bi-core peeling

algorithm. Ding et al. applied bi-core to recommender systems and provided a sequential bi-core peeling algorithm based

on the 𝑘-core peeling algorithm [19]. Liu et al. developed an efficient computation sharing sequential bi-core peeling

algorithm and a memory-efficient indexing structure to store the bi-cores [29]. Wang et al. extended the problem to

weighted bipartite graphs to find the bi-core with the highest edge weights containing a given query vertex [50].

3 PRELIMINARIES

In this section, we provide the definitions and notations that we use throughout this paper.

https://github.com/ClaireBookworm/gbbs

4 Yihao Huang and Claire Wang

Table 1. Graph Notation Summary

𝐺 An undirected, simple, bipartite graph

𝑈 One of the vertex subset of 𝐺 , one of the bipartition

𝑉 The other vertex subset of 𝐺 , the other bipartition

deg(𝑥) Degree or induced degree of generic vertex 𝑥 , depending on context

dmax𝑣 The maximum vertex degree in 𝑉

dmax𝑢 The maximum vertex degree in𝑈

max𝛼 (𝛽) The max 𝛼 value such that (𝛼, 𝛽)-core is nonempty

max𝛽 (𝛼) The max 𝛽 value such that (𝛼, 𝛽)-core is nonempty

𝛿 The max 𝛿 value such that (𝛿, 𝛿)-core is nonempty. In other words, it is the maximum
unipartite 𝑘-core number of graph 𝐺

Graph Definitions.
See Table 1 for a table of graph notations.

We take every graph to be simple, undirected, and bipartite. A bipartite graph is a graph 𝐺 consisting of two mutually

exclusive sets of vertices𝑈 and 𝑉 , such that every edge connects a vertex in𝑈 with a vertex in 𝑉 . In other words, every

edge is of the form (𝑢, 𝑣) where 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 . Let deg(𝑢) denote the degree of vertex 𝑢.

DEFINITION 1. A bi-core, or an (𝛼, 𝛽)-core, is the maximal induced subgraph 𝐺 ′ = (𝑈 ′,𝑉 ′) of 𝐺 such that for every

𝑢 ∈ 𝑈 ′, deg(𝑢) ≥ 𝛼 , and for every 𝑣 ∈ 𝑉 ′, deg(𝑣) ≥ 𝛽.

Here deg(𝑢) denotes the induced degree of vertex 𝑢 in the induced subgraph 𝐺 ′. We make no distinction between the

notation of a vertex’s degree in 𝐺 versus in 𝐺 ′ and assume that it is clear from the context.

Note the following:

REMARK 1. if 𝑢 ∈ (𝛼1, 𝛽1)-core, then 𝑢 ∈ (𝛼2, 𝛽2)-core if 𝛼2 ≤ 𝛼1 and 𝛽2 ≤ 𝛽1.

REMARK 2. Every nonempty (𝛼, 𝛽)-core must have 𝛼 ≤ 𝛿 and/or 𝛽 ≤ 𝛿 .

Assume for the sake of contradiction there exist a nonempty (𝛼, 𝛽)-core with 𝛼 > 𝛿 and 𝛽 > 𝛿 , then by remark 1, we

know that (𝛼, 𝛽)-core ⊆ (𝛿 + 1, 𝛿 + 1)-core. Thus, the (𝛿 + 1, 𝛿 + 1)-core is nonempty and 𝛿 is not the max unipartite 𝑘-core

number of the graph, reaching a contradiction.

Problem Statement. For 𝑢 ∈ 𝑈 , we define 𝛽max 𝛼 (𝑢) for a fixed 𝛼 to be the maximum 𝛽 value such that 𝑢 ∈ (𝛼, 𝛽)-core.

Similarly, for 𝑣 ∈ 𝑉 , we let 𝛼max 𝛽 (𝑣) denote, for a fixed 𝛽, the maximum 𝛼 value such that 𝑣 ∈ (𝛼, 𝛽)-core.

Given these definitions, we define the problem of bi-core decomposition as follows:

DEFINITION 2. The bi-core decomposition problem finds the 𝛽max 𝛼′ (𝑢) for every 𝑢 ∈ 𝑈 and every fixed 𝛼 ′, and

𝛼max 𝛽′ (𝑣) for every 𝑣 ∈ 𝑉 and every fixed 𝛽 ′ [29].

Efficient Algorithm for Parallel Bi-core Decomposition 5

With these values, we can determine for every vertex 𝑢 ∈ 𝑈 whether or not it is in (𝛼, 𝛽)-core for any 𝛼, 𝛽 values. If

𝛽max 𝛼 (𝑢) ≥ 𝛽, then 𝑢 ∈ (𝛼, 𝛽)-core due to remark 1. Similarly, if 𝛼max 𝛽 (𝑣) ≥ 𝛼 , then 𝑣 ∈ (𝛼, 𝛽)-core.

Model of Computation. We use the shared memory model of parallel computation; we use the work-span model for

our analysis, which allows us to derive theoretical bounds on the algorithm’s running time on 𝑝 processors. The work of

an algorithm is the total number of operations executed, and the span is the length of the longest dependency path [15].

Brent’s Theorem [11] states that given an algorithm’s work 𝑇1 and span 𝑇∞, the algorithm’s runtime on 𝑝 processors 𝑇𝑝
can be bounded by

𝑇𝑝 ≤
𝑇1 −𝑇∞

𝑝
+𝑇∞

We assume arbitrary forking for simplicity. Or in other words, forking 𝑛 processes has a span of 𝑂 (1). With the provided

conditions, we show that our algorithm is work-efficient, meaning that it has the same work complexity as the best

sequential algorithm.

Evaluated with the work-span model, our algorithm has work 𝑂 (𝑚) and span 𝑂 (𝜌 log(𝑛)) w.h.p. 1 𝜌 is the bi-core

peeling complexities, as defined in Section 5.1.

Parallel Primitives. Here, we define the parallel primitives that we use throughout our algorithms.

ATOMIC-WRITE-MAX(𝑎, 𝑏) takes as input two values, 𝑎 and 𝑏. If 𝑏 > 𝑎, then it atomically updates 𝑎 to 𝑏.

PREFIX-SUM(𝐴) takes as input a sequence and returns as output a sequence of the same length such that each element

equals the sum of all elements before it and itself in the original sequence. PREFIX-SUM has 𝑂 (𝑛) work and 𝑂 (log(𝑛))
w.h.p. span where 𝑛 is the length of the sequence [15].

REDUCE-MIN(𝐴) takes as input a sequence of length 𝑛. It returns the minimum element in the sequence. REDUCE-MIN

has work 𝑂 (𝑛) and span 𝑂 (log(𝑛))w.h.p. [15].

FILTER(𝐴) takes as input a sequence and a condition for filtering. It retains all items for which the condition is true

and then outputs the resulting sequence. The function returns a sequence of filtered elements in𝑂 (𝑛) work and𝑂 (log(𝑛))
w.h.p. span [15].

HISTOGRAM(𝐴) takes as input a sequence of indices. It applies semisort to the indices and create a histogram of the

frequencies of each index. It takes 𝑂 (𝑛) expected work and 𝑂 (log(𝑛)) span w.h.p. [24].

4 SEQUENTIAL BI-CORE DECOMPOSITION

4.1 Sequential Peeling

First, we note that the problem of computing the 𝛼max 𝛽 (𝑣) values for all 𝑣 ∈ 𝑉 and all 1 ≤ 𝛽 ≤ dmax𝑣 is symmetric

to the problem of finding the 𝛽max 𝛼 (𝑢) values for all possible 𝑢 and 𝛼 . Therefore, we focus our discussion on the

problem of finding the 𝛼max 𝛽 (𝑣) values. Note that 𝛼max 𝛽 (𝑣) = 𝛼 if 𝑣 ∈ (𝛼, 𝛽)-core but 𝑣 ∉ (𝛼 + 1, 𝛽)-core. Therefore, a

peeling-based algorithm is often applied to solve the problem [8, 19]. In a baseline peeling-based algorithm, we apply

PEEL-FIX-𝛽 to every 𝛽 ′ between 1 and dmax𝑣 . PEEL-FIX-𝛽 takes as input a specific fixed 𝛽 ′ value. Then the algorithm

increases the 𝛼 value of the (𝛼, 𝛽 ′)-core from 1 to max𝛼 (𝛽 ′) while iteratively deleting vertices no longer within the current

(𝛼, 𝛽 ′)-core. In other words, the algorithm peels by 𝛼 from 1 to max𝛼 (𝛽 ′). While deleting a vertex 𝑣 when increasing the

𝛼 value to 𝛼 + 1, we update 𝛼max 𝛽′ ← 𝛼 , because it is the highest 𝛼 value for which 𝑣 ∈ (𝛼, 𝛽 ′)-core. We perform the

mirror operations for PEEL-FIX-𝛼 .

1w.h.p. stands for with high probability (meaning a probability of 1 − 𝐶
𝑛𝑎

for some𝐶 and any 𝑎 ≥ 1)

6 Yihao Huang and Claire Wang

4.2 Computation Sharing

Liu et al. observed that it is unnecessary to perform the 𝛼-core peeling for all possible 𝛽 ′ values. It is sufficient to perform

𝛼-core peeling for 1 ≤ 𝛽 ′ ≤ 𝛿 . The only modification needed is to also update the 𝛽max 𝛼 (𝑢) value while deleting a

vertex 𝑢 in the peeling process. When we delete 𝑢 while increasing the 𝛼 value to 𝛼 + 1, we know that 𝑢 ∈ (𝛼, 𝛽 ′)-core.

So we can update 𝛽max 𝛼 (𝑢) value to at least 𝛽 ′. Due to remark 1, we can also update 𝛽max 𝑖 (𝑢) to at least 𝛽 ′, for 𝑖 < 𝛼 .

Provided that 𝛼-core peeling is performed for all 1 ≤ 𝛽 ′ ≤ 𝛿 , Liu et al. showed that all 𝛽max 𝛼 (𝑢) entries with 𝛼 > 𝛿

will be updated to their correct values. Given 𝑢 ∈ (𝛼, 𝛽max 𝛼 (𝑢))-core and 𝛼 > 𝛿 , we know 𝛽max 𝛼 (𝑢) ≤ 𝛿 due to remark

2.Therefore, we must have peeled off (𝛼, 𝛽max 𝛼)-core in the peeling process and would have recorded that correct 𝛽

value for the entry.

Algorithm 1 Sequential Baseline 1 [29]
1: procedure SEQ-BI-CORE(G)
2: for 𝛼′ = 1 to 𝛿 do
3: PEEL-FIX-𝛼(G,𝛼′)
4: for 𝛽′ = 1 to 𝛿 do
5: PEEL-FIX-𝛽(G,𝛽′)
6: procedure PEEL-FIX-𝛽(G,𝛽′)
7: DEL-UPDATE(𝑣 if deg(𝑣) < 𝛽′) ⊲ Peel𝑉 from 1 to 𝛽′ − 1
8: while𝑈 ≠ ∅ do
9: delU, 𝛼 ← FIND-MIN(deg(𝑢)) ⊲ Get min unpeeled degree in𝑈

10: for all 𝑢 in delU do
11: for 𝑖 = 1 to 𝛼 do
12: 𝛽𝑚𝑎𝑥 𝑖 (𝑢) ← max(𝛽𝑚𝑎𝑥 𝑖 (𝑢), 𝛽′)
13: delV←DEL-UPDATE(delU, 𝛽) ⊲ Peel𝑈 up to 𝛼

14: for all 𝑣 in delV do
15: 𝛼𝑚𝑎𝑥 𝛽′ (𝑢) ← 𝛼 ⊲ Update 𝛼𝑚𝑎𝑥 𝛽′

16: DEL-UPDATE(delV, 𝛼) ⊲ Remove peeled 𝑣

17: procedure PEEL-FIX-𝛼(G,𝛼′)
18: mirror image of PEEL-FIX-𝛽
19: procedure DEL-UPDATE(delX, 𝑘)
20: delY← ∅
21: for all 𝑥 in delX do
22: for all 𝑦 in neighbor(𝑥) do
23: deg(𝑦) ← deg(𝑦) − 1
24: if deg(𝑦) < 𝑘 then
25: add 𝑦 to delY
26: mark 𝑦 as removed
27: mark 𝑥 as removed
28: return delY

We now provide a more detailed description of the algorithm. On Lines 4–5 of Algorithm 1, we loop over all 1 ≤ 𝛽 ′ ≤ 𝛿
and run PEEL-FIX-𝛽 on each 𝛽 ′. Each iteration of PEEL-FIX-𝛽 peels 𝛼 from 1 to max𝛼 (𝛽 ′) for the given 𝛽 ′. Specifically,

it does the following. On Line 7, DEL-UPDATE deletes all vertices 𝑣 with deg(𝑣) < 𝛽 ′ because these vertices are not in

any (𝛼, 𝛽 ′)-core for the given 𝛽 ′. Then, until all 𝑣 ∈ 𝑉 are peeled off, we execute Lines 9–16. On Line 9, we find the set of

vertices 𝑢 with the current minimum degree and store it to delU. We store the current minimum degree to 𝛼 . At this point,

all remaining vertices are in (𝛼, 𝛽 ′)-core. A round of peeling will peel off all vertices with induced degree ≤ 𝛼 , which are

stored in delU. Lines 10–12 record the 𝛽max 𝛼′ (𝑢) values for all 𝑢 ∈ delU as described in section 5.2. Line 13 deletes all

vertices 𝑢 ∈ delU. The DEL-UPDATE function iteratively removes vertices in delU while updating the degrees of their

neighbors. If the neighbors’ degree fall below 𝛽 ′, that means 𝑣 ∉ (𝛼 + 1, 𝛽 ′)-core and can be peeled, so they are recorded

in delY. We update the 𝛼max 𝛽′ (𝑢) values as described in section 5.1 on line 15 and peel vertices in delV on line 16.

For PEEL-FIX-𝛽, we simply mirror PEEL-FIX-𝛼 , swapping 𝛼 ′ with 𝛽, 𝛽 ′ with 𝛼 , 𝑉 with𝑈 , and 𝑣 with 𝑢.

Efficient Algorithm for Parallel Bi-core Decomposition 7

4.3 Analysis and Implementation Details

To analyze the runtime of the entire algorithm, we first focus on the runtime of PEEL-FIX-𝛼 . We separate it into several

parts. First, notice the runtime of all DEL-UPDATE operations is bounded by 𝑂 (𝑚). This is because for each generic

vertex 𝑣 we delete, we traverse its neighbors to update their degrees. Thus each vertex’s neighbors will only be traversed

once. That gives a runtime of 𝑂 (∑𝑥 ∈𝑉 or 𝑈 deg(𝑖)) = 𝑂 (𝑚) for the part of DEL-UPDATE. In our implementation, we do

not delete vertices or edges from the graph during peeling but simply mark vertices as deleted. This does not change

the complexity because each edge (𝑢, 𝑣) can only be traversed twice in each peeling, once when 𝑢 is peeled and once

when 𝑣 is peeled. Line 14–15 is bounded by 𝑂 (𝑛) since there can be at most 𝑛 updates to 𝛼max 𝛽 ′(𝑣), because there

are only 𝑂 (𝑛) 𝑣s. Line 10–12 is also bounded by 𝑂 (𝑚) because the maximal 𝛼 value is 𝑂 (deg(𝑢)), thus giving a total

runtime of 𝑂 (∑𝑢∈𝑈 deg(𝑢)) = 𝑂 (𝑚). FIND-MIN can be achieved in 𝑂 (dmax𝑢) = 𝑂 (𝑛) with sequential search. In our

implementation, we organize vertices into an array of buckets; each bucket stores all vertices with degree corresponding

to the bucket’s index; FIND-MIN sequentially searches for the next nonempty bucket. Thus PEEL-FIX-𝛼 runs in 𝑂 (𝑚)
time[29]. Since 𝛿 is bounded by 𝑂 (

√
𝑚), Algorithm 1 runs in 𝑂 (𝛿𝑚) or more loosely 𝑂 (𝑚

3
2).

5 PARALLEL BI-CORE DECOMPOSITION ALGORITHM

The sequential nature of Liu et al’s bi-core decomposition algorithm (1) limits its practical applicability to large graphs.

We present in this section a parallel bi-core decomposition algorithm using the same computation-sharing technique

developed by Liu et al. We prove that our algorithm is work-efficient and has span 𝑂 (𝜌 log(𝑛)) w.h.p. where 𝜌 is the

peeling complexity, which we defines as follows:

DEFINITION 3. The bi-core peeling complexity is the maximum number of rounds of peeling executed by any call of

PEEL-FIX-𝛼 or PEEL-FIX-𝛽).

Our algorithm is peeling-based, with the process of bi-core decomposition separated into rounds of peeling. For

PEEL-FIX-𝛽 given a fixed 𝛽 ′, in each round, we remove all vertices 𝑢 with the lowest induced degree concurrently; in

other words, we peel all vertices 𝑢 with deg(𝑢) ≤ 𝛼 for the current 𝛼 . Notably, these vertices are peeled concurrently

as opposed to sequentially in Algorithm 1. Due to the concurrency of the peeling, we need to update peeled vertices’

neighbors using a parallel aggregated-peeling approach described in section 6.2. Meanwhile, to reduce the span of the

sequential search used in Algorithm 1, we introduce parallel exponential search on a parallel bucketing structure to find

the next bucket of vertices with minimum degree; we discuss this in the following section.

5.1 Parallel Bucketing and Exponential Search

To achieve polylogarithmic span while maintaining work-efficiency, we use a bucketing structure to store the subset of

vertices to be peeled at each round. Dhulipala et al. introduced this parallel bucketing structure and applied it to parallel

𝑘-core peeling [18]. The data structure consist of an array of buckets indexed by degrees. Each bucket stores all vertices

with current degree corresponding to its index. When the degrees of vertices change due to other vertices being peeled,

we call UPDATE-VERTICES to update those vertices to new buckets corresponding to the new degrees in parallel. In the

beginning of each round of peeling, we call NEXT-BUCKET to search for the next subset of vertices with lowest induced

degree ≥ the current degree value. We give the pseudo code for the parallel exponential search used in NEXT-BUCKET in

Algorithm 3 and we implement our parallel bi-core peeling algorithm in Algorithm 4.

NEXT-BUCKET finds and returns the next nonempty bucket with degree ≥ 𝑘. In each iteration of the while loop on

Line 3–4 of Algorithm 3, we determine if the interval (𝑘 + 𝑖
2 , 𝑘 + 𝑖] contains the next nonempty bucket. Then, we double

8 Yihao Huang and Claire Wang

Algorithm 2 Parallel Exponential Search
1: procedure NEXT-BUCKET(𝑘)
2: 𝑖 ← 1 ⊲ 𝑖 is doubled in each iteration of the while loop. In each iteration, we search interval (𝑖2 , 𝑖] for the next nonempty bucket
3: while HAS-MIN-DEG(buckets[𝑘 + 𝑖

2 + 1 to 𝑘 + 𝑖])= false do
4: 𝑖 ← 2𝑖
5: minDeg← REDUCE-MIN(buckets[𝑘 + 𝑖

2 + 1 to 𝑘 + 𝑖])
6: return buckets[minDeg], 𝑡𝑒𝑥𝑡𝑚𝑖𝑛𝐷𝑒𝑔 ⊲ Return next min deg
7: procedure HAS-MIN-DEG(buckets)
8: hasMinDeg← false ⊲ hasMinDeg records whether the interval contain the next nonempty bucket
9: parfor 𝑖 = 0 to |buckets | do

10: if buckets[𝑖] exists then
11: ATOMIC-COMPARE-AND-SWAP(hasMinDeg, true)
12: return hasMinDeg

𝑖 and repeats until the next nonempty bucket is found. For example, we start the search from the interval (𝑘, 𝑘 + 1].
HAS-MIN-DEG on Line 3 Algorithm 3 checks whether the next minimum degree vertex exist in the given interval. If it

does not exist in this interval, we proceed to interval (𝑘 + 1, 𝑘 + 2], and then to (𝑘 + 2, 𝑘 + 4], (𝑘 + 2𝑖 , 𝑘 + 2𝑖+1) for all 𝑖.

Note that one minor detail we exclude from consideration here is that some vertices in𝑉 ′, after the latest round of peeling

could take on a degree ≤ 𝑘 . We simply set their degree to 𝑘 to delete them all together in the next round of peeling. Or, in

other words, the next bucket can sometimes be the current bucket with new vertices added and the old ones peeled. On

Line 5, we call REDUCE-MIN on the sequence of the indices of nonempty buckets to obtain the next minimum degree

with nonempty bucket. On Line 6, we return the next nonempty bucket.

Analysis. First, we prove the work-efficiency of NEXT-BUCKET over all calls to the algorithm in each call to PAR-PEEL-

FIX-𝛼 . Assume NEXT-BUCKET is called with current degree value 𝑘 and that the next minimum degree is 𝑘 + 𝑝. Then,

notice that NEXT-BUCKET searches at most 2𝑝 elements before terminating and returning 𝑘 + 𝑝 as the next minimum

degree. If it searches only 𝑘 elements ahead, the algorithm has an overall work (in each complete 𝛽-core peeling) of

𝑂 (dmax𝑣) = 𝑂 (𝑛). Since it searches only 2𝑝 ahead, its work is bounded by 𝑂 (2𝑛) = 𝑂 (𝑛) as well.

Next, we show that NEXT-BUCKET has a span of 𝑂 (𝜌 log(𝑛)) over all iterations in one call to PAR-PEEL-FIX-𝛼 .

Assume, as previously, that the current degree is 𝑘 and the next degree is 𝑘 + 𝑝. Note that NEXT-BUCKET takes at most

log(𝑘) iterations of its while loop on Line 3 Algorithm 3 to find the next minimum degree 𝑘 + 𝑝. To loosen the bound,

log(𝑘) = 𝑂 (log(𝑛)). Note that there are 𝑂 (𝜌) rounds of peeling (or 𝑂 (𝜌) calls to NEXT-BUCKET) in a complete 𝛽-core

peeling (or a call to PEEL-FIX-𝛼). Therefore, the total span of NEXT-BUCKET is 𝑂 (𝜌 log(𝑛)). An assumption we make

in this derivation is that HAS-MIN-DEG as called on Line 32 has span 𝑂 (1). This is true because at most one ATOMIC-

COMPARE-AND-SWAP operation can be successfully executed for a given interval. Additionally, note that REDUCE-MIN

on Line 5 Algorithm 3 has span 𝑂 (log(𝑛)) is executed only once for each round, totaling a span of 𝑂 (𝜌 log(𝑛)) as well.

5.2 Parallel Aggregated-Peeling

At the crux of PAR-PEEL-FIX-𝛼 and PAR-PEEL-FIX-𝛽 of Algorithm 4 is the PAR-DEL-UPDATE operation which takes

as input a generic subset of vertices 𝑋del and then peels all its vertices in parallel. On Lines 3–6, we iterate through all

neighbors 𝑦 of 𝑋del and store them in an array 𝑌update. On Line 11, HISTOGRAM returns a sequence of pairs (𝑦, count).
For every 𝑦, count stores the number of its occurrences in delY. On Lines 12–13, we iterate through each 𝑦 and decrease

its degree by its corresponding count.

Since many threads may be updating the degree of the same vertex, our aggregation-based approach is necessary to

avoid the atomic update operations that would otherwise add sequential elements into the algorithm.

Efficient Algorithm for Parallel Bi-core Decomposition 9

Algorithm 3 Parallel Aggregated-Peeling
1: procedure PAR-DEL-UPDATE(𝑋del)
2: 𝑌update ← ∅
3: degs← degrees of vertices in 𝑋del
4: offsets← PREFIX-SUM(degs)
5: parfor all 𝑖, 𝑥 in 𝑋del do
6: mark 𝑥 as removed
7: parfor all 𝑗, 𝑦 in neighbor(𝑥) do
8: offset← offsets[𝑖]+𝑗
9: 𝑌update[offset] 𝑦 to 𝑌update ⊲ Record 𝑦 for degree update

10: 𝑌update ← FILTER(𝑌update, not marked as deleted)
11: 𝑌update ← HISTOGRAM(𝑌update) ⊲ Count occurrences of vertices
12: parfor all 𝑦, count in 𝑌update do
13: deg(𝑦) ← deg(𝑦) − count
14: return 𝑌update

Analysis. In each complete 𝛽-core peeling, all vertices are peeled off exactly once. Since we traverse the neighbor of each

vertex in PAR-DEL-UPDATE once, the total work contributed by the parallel peeling procedure PAR-DEL-UPDATE in one

complete 𝛽-core peeling is 𝑂 (∑𝑥 ∈𝑉 or 𝑈 deg(𝑖)) = 𝑂 (𝑚). This is the same work required for the sequential Algorithm 1.

Thus, PAR-DEL-UPDATE is work-efficient.

The span of PAR-DEL-UPDATE is bounded by 𝑂 (log(𝑛)). Lines 5–9 have span 𝑂 (1) due to arbitrary forking. PREFIX-

SUM, FILTER, HISTOGRAM all have span bounded by 𝑂 (log(𝑛)). Therefore, the overall span is 𝑂 (log(𝑛)).

5.3 Parallel Bi-core Decomposition

Algorithm 4 Parallel bi-core decomposition
1: procedure PAR-BI-CORE(𝐺)
2: parfor 𝛼′ = 1 to 𝛿 do
3: PAR-PEEL-FIX-𝛼(𝐺 , 𝛼′)
4: parfor 𝛽′ = 1 to 𝛿 do
5: PAR-PEEL-FIX-𝛽(𝐺 , 𝛽′)
6: procedure PAR-PEEL-FIX-𝛼(𝐺 , 𝛼′)
7: PAR-DEL-UPDATE({𝑢 if deg(𝑢) < 𝛼′ }) ⊲ Peel𝑈 from 1 to 𝛼′ − 1
8: buckets← BUCKET(𝑉 , 𝐺) ⊲ Store vertices in a bucketing structure by degree
9: while buckets ≠ ∅ do

10: 𝑉del, 𝛽 ← buckets.NEXT-BUCKET(𝛽) ⊲ Extract the next set of vertices with minimum degree
11: parfor all 𝑣 in𝑉del do
12: parfor 𝑖 = 1 to 𝛽 do
13: 𝛼max 𝑖 (𝑣) ← max(𝛼max 𝑖 (𝑣), 𝛼′) ⊲ Update 𝛼max 𝑖 (𝑣)
14: 𝑈updated ← PAR-DEL-UPDATE(𝑉del) ⊲ Peel𝑉 up to 𝛽

15: 𝑈del ← FILTER(𝑈updated, deg(𝑢) < 𝛼′)
16: parfor all 𝑢 in𝑈del do
17: 𝛽max 𝛼′ (𝑢) ← max(𝛽max 𝛼′ (𝑢), 𝛽) ⊲ Update 𝛽max𝛼′ (𝑢)
18: 𝑉updated ← PAR-DEL-UPDATE(𝑈del) ⊲ Remove peeled 𝑢
19: buckets.UPDATE-VERTICES(𝑉updated) ⊲ Update vertices with changed degrees in the bucketing structure
20: procedure PAR-PEEL-FIX-𝛽(G, 𝛽′)
21: symmetric to PAR-PEEL-FIX-𝛼

The general structure of Algorithm 4 is similar to that of Algorithm 1, but the core components–DEL-UPDATE,FIND-

MIN–are replaced with parallel algorithms.

On Line 7 of PAR-PEEL-FIX-𝛼 , we peel off all 𝑢 ∈ 𝑈 with degree less than 𝛼 ′. On Line 8, BUCKET returns a bucket

representation of 𝑉 as implemented by Dhulipala et al. [18]. We call NEXT-BUCKET on buckets on Line 10 to obtain

the next nonempty bucket, storing it into 𝑉del while also updating the 𝛽 value. 𝑉del records all 𝑣 with induced degree

deg(𝑣) ≤ 𝛽; note that for all 𝑣 ∈ delV, 𝑣 ∈ (𝛼 ′, 𝛽)-core but 𝑣 ∉ (𝛼 ′, 𝛽 + 1)-core. On Lines 11–13, we update the 𝛼max 𝛽′

10 Yihao Huang and Claire Wang

Fig. 1. Example Graph

values similar to Algorithm 1, but in parallel. Note that there is no determinacy race between different branches of the

parallel for-loops in each 𝛽-core peeling; this is because each branch spawned on Lines 11–12 correspond to a different

(𝛽, 𝑣) pair. Therefore, if we keep a copy of 𝛼max 𝛽 and 𝛽max 𝛼 for each thread, Line 13 do not incur determinacy race

issues. On Line 14, we peel off all vertices in the current bucket, 𝑉del. Lines 16–17 updates 𝛽max 𝛼′ values in the same

way as 1; by similar arguments, this update does not incur determinacy issues either. Then, Line 18 calls DEL-UPDATE

to peel off all vertices stored in 𝑈del. Finally, on Line 19, we update the degrees of vertices in 𝑉update, which consist

of all vertices 𝑣 ∈ 𝑉 whose degree is affected by peeling off 𝑈del; UPDATE-VERTEX moves 𝑣 ∈ 𝑉update to new buckets

corresponding to their new degrees.

PAR-PEEL-FIX-𝛽 is symmetric to PAR-PEEL-FIX-𝛼 , with all 𝑢, 𝑣 and 𝛼, 𝛽 flipped.

Analysis. PAR-PEEL-FIX-𝛼 has work complexity𝑂 (𝑚). This is because PAR-DEL-UPDATE, NEXT-BUCKET, and UPDATE-

VERTICES [18] all have overall work across all iterations of the while loop bounded by 𝑂 (𝑚).
Each iteration of the while loop on Line 9 has span 𝑂 (log(𝑛)) because FILTER, PAR-DEL-UPDATE, and UPDATE-

VERTICES [18] all have span bounded by𝑂 (log(𝑛)). Thus, excluding NEXT-BUCKET from consideration, PAR-PEEL-FIX-𝛽

attains a span of 𝑂 (𝜌𝛽 log(𝑛)). 𝜌𝛽 is the number of rounds of peeling executed by PAR-PEEL-FIX-𝛽 given the specific 𝛽

value. NEXT-BUCKET does not change the span complexity because its span across all iterations of the while loop is also

bounded by 𝑂 (𝜌𝛽 log(𝑛)).

5.4 Peeling Space Pruning Optimization

In this section, we introduce a peeling space pruning optimization to our algorithm. This optimization is also applicable

to the baseline sequential bi-core decomposition algorithm 1. The baseline algorithm introduced by Liu et al. performs

a complete 𝛼-core peeling (from 𝛼 = 1 to 𝛼 = dmax𝑢) for each 1 ≤ 𝛽 ′ ≤ 𝛿 . Then, it performs 𝛽-core peeling (from

𝛽 = 1 to 𝛽 = dmax𝑣) for each 1 ≤ 𝛼 ′ ≤ 𝛿 . We observe that, in the process of peeling, all (𝛼, 𝛽)-cores with 1 ≤ 𝛼 ≤ 𝛿
and 1 ≤ 𝛽 ≤ 𝛿 are peeled twice, once when we perform 𝛼-core peeling for different 𝛽 values and another time when we

perform 𝛽-core peeling for different 𝛼 values.

To avoid repetition, we can modify Algorithm 4 such that each PAR-PEEL-FIX-𝛼(𝐺, 𝛼 ′) starts 𝛽-core peeling from

the (𝛼 ′, 𝛼 ′)-core instead of from (𝛼 ′, 1)-core. In other words, the algorithm starts iteratively increasing 𝛽 value from 𝛼 ′

to dmax𝑣 and removing vertices no longer within the current (𝛼 ′, 𝛽)-core at the same time. Notably, we confine 𝛽 to

𝛼 ′ ≤ 𝛽 ≤ dmax𝑣 as opposed to 1 ≤ 𝛽 ≤ dmax𝑣 as used in Algorithm 4 and 1.

We illustrate the optimization with an example. Consider a graph as shown in figure 1, we visualize its peeling space in

figure 3.

Each position in the grid of figure 3 represents an (𝛼, 𝛽)-core. Edges represent a single-step peeling operation from

(𝛼, 𝛽)-core to (𝛼, 𝛽 + 1)-core (upward) or to (𝛼 + 1, 𝛽)-core (rightward). The numerals on an edge represents the indices

Efficient Algorithm for Parallel Bi-core Decomposition 11

Fig. 2. Peeling Space

of vertices that would be deleted by that specific peeling operation. The red nodes represent (𝛼, 𝛽)-cores that are empty

and the yellow node represents the (𝛿, 𝛿)-core. Every core corresponding to a grid position that is not drawn is empty. The

red nodes form the boundary of the peeling space.

The peeling operations performed by algorithm 4 can be visualized by the yellow peeling paths in figure 3. For 𝛼 ′ = 1,

we perform 𝛽-core peeling from 𝛽 = 1 to 𝛽 = 5. For 𝛼 ′ = 2, we again increase 𝛽 from 1 to 3 while iteratively removing

vertices not within the current bi-core. With the proposed optimization, for 𝛼 ′ = 2, we only perform 𝛽-core peeling from

𝛽 = 2 to 𝛽 = 5, starting from the (𝛼 ′, 𝛼 ′)-core or the (2, 2)-core in this case. This is represented by the blue peeling paths

in figure 3.

To show the correctness of the optimized algorithm. We divide the peeling space into 3 parts: part C with the diagonal

(𝑥, 𝑥)-cores, part B where all the (𝛼, 𝛽)-cores satisfy 𝛽 > 𝛼 and part A where the (𝛼, 𝛽)-cores satisfy 𝛼 > 𝛽. Note that

part A of the peeling space correspond visually to the part of peeling space to the right of the diagonal (𝑥, 𝑥)-cores; part B

correspond instead to the section above the diagonal (𝑥, 𝑥)-cores. Thus, the optimized algorithm’s 𝛼-core peeling peels in

part A of the peeling space; the 𝛽-core peeling peels in part B of the peeling space.

First, we note that the correct 𝛼max 𝛽 (𝑣) values are computed for all vertices 𝑣 with (𝛼max 𝛽 (𝑣), 𝛽)-cores in part A or

C of the peeling space. For a specific 𝛽 value, if vertex 𝑣 ∈ (𝛼, 𝛽)-core but 𝑣 ∉ (𝛼 + 1, 𝛽)-core, then 𝛼max 𝛽 (𝑣) is recorded

correctly to be 𝛼 . This is true for all 1 ≤ 𝛽 ≤ 𝛿 and 𝑣 ∈ (𝛽, 𝛽)-core.

12 Yihao Huang and Claire Wang

(a) Algorithm 4’s Peeling Path (b) Optimized Peeling Path

Fig. 3. Unoptimized vs Optimized Peeling Paths

Then, we show that the optimized algorithm computes the correct 𝛼max 𝛽 (𝑣) values for all vertices 𝑣 with (𝛼max 𝛽 (𝑣), 𝛽)-
cores in part B of the peeling space. When performing 𝛽-core peeling with 𝛼 ′ = 𝛼max 𝛽 (𝑣), the algorithm would remove 𝑣

at (𝛼max 𝛽 (𝑣), 𝛽 ′)-core, where 𝛽 ′ is some core value higher than 𝛽. Given that, the updates of 𝛼max 𝛽 (𝑣) values performed

on Lines 11–13 of Algorithm 4 ensures the 𝛼max 𝛽 (𝑣) value recorded is 𝛼 ′, the correct value. This is valid for all 𝑣 and 𝛽

such that 𝛼max 𝛽 (𝑣) < 𝛽 and so all 𝛼max 𝛽 (𝑣) values satisfying the conditions is correct.

Symmetric correctness arguments can be established for 𝛽max 𝛼 (𝑢) values to show that the overall optimized algorithm

is correct.

5.5 Implementation and Other Optimizations

Directly implementation of our theoretically efficient Algorithm 4 with or without the optimization mentioned above

is practically inefficient. On machines with only 30-cores and 60 vCPUs, the significant parallelism of Algorithm 4 is

unnecessary and only incur additional overhead due to the scheduler and the aggregated peeling used. To implement a

practically fast bi-core decomposition algorithm, we forgo the parallel aggregated-peeling and only parallelize between

different 𝛼-core peelings and 𝛽-core peelings. We find that parallelism internal to each complete 𝛼-core or 𝛽-core peeling

is superfluous. We also introduce several optimizations to speed up our parallel algorithm.

(1) Lazy Bucket Instantiation Instead of keeping track of all the buckets and vertices within, we only instantiate the

next 16 buckets. This technique was used by Dhulipala et al. for implementing 𝑘-core decomposition [18].

(2) Load Balancing When distributing different 𝛼-core, 𝛽-core peelings to different threads, we employ a smart

load-balancing based on the observations that 𝛼-core peelings with higher 𝛽 values take less time to complete (and

similar for 𝛽-core peelings).

Efficient Algorithm for Parallel Bi-core Decomposition 13

Graph Name Type |𝑈 | |𝑉 | 𝑛 𝑚 dmax 𝛿 𝜌max

Orkut Membership 2.78M 8.73M 11.51M 327M 318K 466 12100
Web Trackers Inclusion 27.7M 284K 40.43M 140.6M 11.57M 437 4542
LiveJournal Membership S 3.20M 7.49M 13.89M 112M 1.05M 108 6831

TREC Inclusion 556K 1.17M 1.73M 83.6M 457K 508 6029
Reuters Inclusion 781K 284K 1.06M 60.6M 345K 192 4767

Epinions Rating 120K 755K 880k 13.67M 162K 151 3049
Flickr Membership 396K 104K 500k 8.55M 35K 147 2300

Table 2. Graphs Statistics

(a) runtimes (log-scale) (b) runtimes

Fig. 4. Peeling runtime (in seconds) for different algorithms

6 EXPERIMENTS

We provide in this section a comprehensive evaluation of our implementation of our parallel bi-core decomposition

algorithm.

We used the KONECT graph database [27], as shown in Table 2. We use Google Cloud Platform c2-standard-60

instances for all our experiments, which run on 30 cores Intel 3.1 GHz Cascade Lake processors with two-way hyper-

threading and 240 GB of memory; the processors have max turbo clock-speed of 3.8 GHz.

Graphs. The graphs we used (shown in Table 2) are Orkut [4], Web Trackers [7], LiveJournal [3], epinions [1], TREC [6],

flickr [2], and reuters [5].

Algorithms. We benchmark the following 4 algorithms. We benchmark parallel algorithms using 1, 2, 4, 8, 12, 16, 24, 30, 60
threads. All code is written in C++ with -O3 optimization level.

(1) SEQ-BASELINE: Algorithm 1 as described by Liu et al.

(2) SEQ-OPTIMIZED: Algorithm 1 but with peeling space pruning optimization introduced in section 5.4

(3) PAR-BASELINE: Algorithm 4

(4) PAR-OPTIMIZED: Algorithm 4 with peeling space pruning optimization

Comparison of Performances of Algorithms.
Figure 4 shows the runtimes of our algorithms for these graphs. The parallel algorithms are run with 24 threads (each

thread is a virtual hyperthread, so this correspond to a 12-core machine).

14 Yihao Huang and Claire Wang

(a) Ratio of Runtimes Relative to Serial Time (b) Logarithmic Scale

Fig. 5. Normalized Runtimes vs Number of Threads

First, note that SEQ-BASELINE is an accurate reproduction of Liu et al.’s sequential algorithm, the code of which we

have not obtain at the time of writing this paper. On Orkut, our SEQ-BASELINE reports a runtime of 4538 seconds on a

3.1GHz CPU compared to Liu et al.’s 4103 seconds runtime on a 3.4GHz CPU. Orkut is the only graph for which Liu et

al. reported a concrete numerical runtime.

We observe that PAR-BASELINE consistently outperforms the sequential baselines by large margins with 7.8-14.4x

speedups over SEQ-BASELINE running on 12 cores and 24 vCPUs. This outperforms the speedup achieved by Liu et

al.’s parallel algorithm by large margins. For example, Liu et al.’s parallel algorithm achieves 5.6x speedup over their

sequential baseline on Orkut running on a 12-core machine with 3.4GHz CPU clock speed. In comparison, our parallel

algorithm achieves 14.4x speedup over SEQ-BASELINE. On Orkut, PAR-BASELINE reports a runtime of 316 seconds with

3.1GHz CPUs compared to Liu et al’s reported 732 seconds with 3.4GHz CPUs. This proves that optimizations such as

parallel load-balancing and lazily instantiated bucketing structure improves performance.

The peeling space pruning optimization strategy we introduced also consistently improves the runtimes of the sequential

baseline by 2.1-2.8x. Comparing PAR-BASELINE to PAR-OPTIMIZED, the optimization improves runtimes by 1.6-3.2x,

demonstrating the effectiveness of the optimization across sequential and parallel peeling.

Overall, comparing PAR-OPTIMIZED to SEQ-BASELINE, our parallel algorithm attains 16.2-35.5x speedup over the

sequential baseline. PAR-OPTIMIZED takes 178 seconds to complete bi-core decomposition for Orkut compared to the 731

seconds provided by Liu et al., which we again emphasize is on different and potentially faster hardware. If we disregard

the hardware difference, our parallel algorithm achieves 4.1x speedup over their parallel algorithm.

Analysis of Scalability.
Figure 5 and Figure 6 illustrates the parallel speedup achieved by our algorithm for different graphs. PAR-OPTIMIZED

achieves consistent speedup across different graphs, showing that PAR-OPTIMIZED is robust across graphs of different

sizes and structures.

Furthermore, PAR-OPTIMIZED demonstrates good scalability across different number of threads. Since the machine we

use have only 30 cores and the 60 threads are just vCPUs not actual additional cores, the parallel speedup plateau when

moving from 30-threads to 60-threads is, to a certain degree, expected. The scheduling overhead of PAR-OPTIMIZED also

contributes to the speedup plateau.

Analysis of 𝜌 vs runtime.

Efficient Algorithm for Parallel Bi-core Decomposition 15

(a) Speedup Ratios for Tested Graphs (b) Logarithmic scale (x and y-axis)

Fig. 6. Speedup vs Number of Threads

Fig. 7. Rho value vs. Runtimes

The span of our algorithm is 𝑂 (𝜌 log(𝑛)) w.h.p. Theoretically, 𝜌 is bounded by 𝑂 (max(dmax𝑢 , dmax𝑣)) = 𝑂 (𝑛).
Therefore, it is theoretically reasonable to assume that 𝜌 is the dominant term in the span. That is empirically true. For

graphs given in Table 2, the 𝜌 values are significantly larger than log2 (𝑛) values. Thus, it is natural to assume there

is an approximately linear correlation between the runtimes of PAR-OPTIMIZED and the 𝜌 values. Indeed, figure 7

experimentally demonstrates a near-linear correlation between the 𝜌 values and the runtimes. This demonstrates that the

bi-core peeling complexity we introduced is an important value in both theoretical and empirical evaluation of parallel

bi-core decomposition algorithms.

16 Yihao Huang and Claire Wang

7 CONCLUSION

In this paper, we study various parallel algorithms for bi-core decomposition, which is an important problem to focus on.

We also develop a shared-memory work-efficient parallel bi-core decomposition algorithm with strong span bounds. In

addition, we provide the pseudo-code for the algorithm and derive its complexity bounds. Finally, our experiments on

various bipartite networks prove the improved performance of our peeling algorithms, showing that it is both performant

and scalable for larger graphs.

REFERENCES
[1] 2017. Epinions Network Dataset – KONECT. http://konect.cc/networks/epinions
[2] 2017. Flickr – KONECT. http://konect.cc/networks/flickr-groupmemberships/
[3] 2017. LiveJournal Network Dataset– KONECT. http://konect.cc/networks/livejournal
[4] 2017. Orkut Network Dataset – KONECT. http://konect.cc/networks/orkut-groupmemberships
[5] 2017. Reuters network dataset – KONECT. http://konect.cc/networks/reuters
[6] 2017. TREC Network Dataset – KONECT. http://konect.cc/networks/gottron-trec
[7] 2017. Web Trackers Dataset – KONECT. http://konect.cc/networks/webtrackers
[8] Adel Ahmed, Vladimir Batagelj, Xiaoyan Fu, Seok-hee Hong, Damian Merrick, and Andrej Mrvar. 2007. Visualisation and analysis of the internet

movie database. In 2007 6th International Asia-Pacific Symposium on Visualization. 17–24. https://doi.org/10.1109/APVIS.2007.329304
[9] Mohammad Almasri, Omer Anjum, Carl Pearson, Zaid Qureshi, Vikram S. Mailthody, Rakesh Nagi, Jinjun Xiong, and Wen-mei Hwu. 2019. Update

on k-truss Decomposition on GPU. In 2019 IEEE High Performance Extreme Computing Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.
2019.8916285

[10] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos Faloutsos. 2013. CopyCatch: Stopping Group Attacks by
Spotting Lockstep Behavior in Social Networks. In Proceedings of the 22nd International Conference on World Wide Web (WWW ’13). Association for
Computing Machinery, New York, NY, USA, 119–130. https://doi.org/10.1145/2488388.2488400

[11] Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic Expressions. J. ACM 21, 2 (April 1974), 201–206.
[12] Monika Cerinšek and Vladimir Batagelj. 2015. Generalized two-mode cores. Social Networks 42 (2015), 80–87. https://doi.org/10.1016/j.socnet.

2015.04.001
[13] Norishige Chiba and Takao Nishizeki. 1985. Arboricity and Subgraph Listing Algorithms. SIAM J. Comput. 14, 1 (Feb. 1985), 210–223.
[14] Jonathan Cohen. 2008. Trusses: Cohesive Subgraphs for Social Network Analysis. (2008).
[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3. ed.). MIT Press.
[16] N. S. Dasari, R. Desh, and M. Zubair. 2014. ParK: An efficient algorithm for 𝑘-core decomposition on multicore processors. In IEEE International

Conference on Big Data. 9–16.
[17] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A Framework for Parallel Graph Algorithms Using Work-efficient Bucketing. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 293–304.
[18] Laxman Dhulipala, Guy Blelloch, and Julian Shun. 2017. Julienne: A Framework for Parallel Graph Algorithms Using Work-efficient Bucketing. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). 293–304.
[19] Danhao Ding, Hui Li, Zhipeng Huang, and Nikos Mamoulis. 2017. Efficient Fault-Tolerant Group Recommendation Using Alpha-Beta-Core. In

Proceedings of the 2017 ACM on Conference on Information and Knowledge Management (CIKM ’17). Association for Computing Machinery, New
York, NY, USA, 2047–2050. https://doi.org/10.1145/3132847.3133130

[20] Yixiang Fang, Xin Huang, Lu Qin, Ying Zhang, Wenjie Zhang, Reynold Cheng, and Xuemin Lin. 2019. A Survey of Community Search Over Big
Graphs. arXiv:cs.DB/1904.12539

[21] Valeria Fionda, Luigi Palopoli, Simona Panni, and Simona E. Rombo. 2007. Bi-grappin: bipartite graph based protein-protein interaction network
similarity search. In 2007 IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2007). 355–361. https://doi.org/10.1109/BIBM.
2007.13

[22] J. Garcia-Algarra, J. M. Pastor, M. L. Mouronte, and J. Galeano. 2017. A structural approach to disentangle the visualization of bipartite biological
networks. bioRxiv (2017). https://doi.org/10.1101/192013 arXiv:https://www.biorxiv.org/content/early/2017/11/21/192013.full.pdf

[23] GraphChallenge [n.d.]. GraphChallenge. http://graphchallenge.mit.edu/.
[24] Yan Gu, Julian Shun, Yihan Sun, and Guy E. Blelloch. 2015. A Top-Down Parallel Semisort. In ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA). 24–34.
[25] H. Kabir and K. Madduri. 2017. Parallel 𝑘-Core Decomposition on Multicore Platforms. In IEEE International Parallel and Distributed Processing

Symposium Workshops (IPDPSW). 1482–1491.
[26] Humayun Kabir and Kamesh Madduri. 2017. Parallel k-truss decomposition on multicore systems. In 2017 IEEE High Performance Extreme

Computing Conference (HPEC). 1–7. https://doi.org/10.1109/HPEC.2017.8091052
[27] Jérôme Kunegis. 2013. KONECT: the Koblenz network collection. International Conference on World Wide Web, 1343–1350.

http://konect.cc/networks/epinions
http://konect.cc/networks/flickr-groupmemberships/
http://konect.cc/networks/livejournal
http://konect.cc/networks/orkut-groupmemberships
http://konect.cc/networks/reuters
http://konect.cc/networks/gottron-trec
http://konect.cc/networks/webtrackers
https://doi.org/10.1109/APVIS.2007.329304
https://doi.org/10.1109/HPEC.2019.8916285
https://doi.org/10.1109/HPEC.2019.8916285
https://doi.org/10.1145/2488388.2488400
https://doi.org/10.1016/j.socnet.2015.04.001
https://doi.org/10.1016/j.socnet.2015.04.001
https://doi.org/10.1145/3132847.3133130
http://arxiv.org/abs/cs.DB/1904.12539
https://doi.org/10.1109/BIBM.2007.13
https://doi.org/10.1109/BIBM.2007.13
https://doi.org/10.1101/192013
http://arxiv.org/abs/https://www.biorxiv.org/content/early/2017/11/21/192013.full.pdf
http://graphchallenge.mit.edu/
https://doi.org/10.1109/HPEC.2017.8091052

Efficient Algorithm for Parallel Bi-core Decomposition 17

[28] Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna, and Cesar A. F. De Rose. 2020. Receipt: Refine Coarse-Grained Independent Tasks for Parallel
Tip Decomposition of Bipartite Graphs. Proc. VLDB Endow. 14, 3 (Nov. 2020), 404–417.

[29] Boge Liu, L. Yuan, Xuemin Lin, Lu Qin, W. Zhang, and Jingren Zhou. 2020. Efficient (𝛼, 𝛽)-core computation in bipartite graphs. VLDB J. 29
(2020), 1075–1099.

[30] David W. Matula and Leland L. Beck. 1983. Smallest-last Ordering and Clustering and Graph Coloring Algorithms. J. ACM 30, 3 (July 1983),
417–427.

[31] Alberto Montresor, Francesco De Pellegrini, and Daniele Miorandi. 2013. Distributed k-Core Decomposition. IEEE Transactions on Parallel and
Distributed Systems 24, 2 (2013), 288–300. https://doi.org/10.1109/TPDS.2012.124

[32] Georgios A Pavlopoulos, Panagiota I Kontou, Athanasia Pavlopoulou, Costas Bouyioukos, Evripides Markou, and Pantelis G Bagos. 2018. Bipartite
graphs in systems biology and medicine: a survey of methods and applications. GigaScience 7, 4 (02 2018). https://doi.org/10.1093/gigascience/giy014
giy014.

[33] Jane B. Reece, Noel Meyers, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson, Bernard J. Cooke, and
Neil A. Campbell. 2015 2015. Campbell biology / Jane B. Reece, Noel Meyers, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky,
Robert B. Jackson, Bernard Cooke (tenth edition. australian and new zealand version. ed.). Pearson Frenchs Forest, NSW. xliv, 1315, A–49, B–1, C–1,
D–1, E–2, F–3, CR–10, G–37, I–54 pages : pages.

[34] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyüce, and Srikanta Tirthapura. 2018. Butterfly Counting in Bipartite Networks. In ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD). 2150–2159.

[35] Ahmet Erdem Sariyüce and Ali Pinar. 2018. Peeling Bipartite Networks for Dense Subgraph Discovery. In ACM International Conference on Web
Search and Data Mining (WSDM). 504–512.

[36] Ahmet Erdem Sariyüce and Ali Pinar. 2018. Peeling Bipartite Networks for Dense Subgraph Discovery. In ACM International Conference on Web
Search and Data Mining (WSDM). 504–512.

[37] Ahmet Erdem Sariyuce, C. Seshadhri, and Ali Pinar. 2017. Parallel Local Algorithms for Core, Truss, and Nucleus Decompositions. (04 2017).
[38] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for Hierarchical Dense Subgraph Discovery. 12, 1 (2018). https:

//doi.org/10.14778/3275536.3275540
[39] Ahmet Erdem Sariyuce, C. Seshadhri, Ali Pinar, and Umit V. Catalyurek. 2015. Finding the Hierarchy of Dense Subgraphs Using Nucleus

Decompositions. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE. https://doi.org/10.1145/
2736277.2741640

[40] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2017. Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs.
ACM Trans. Web 11, 3, Article 16 (July 2017), 16:1–16:27 pages.

[41] Jessica Shi and Julian Shun. 2020. Parallel Algorithms for Butterfly Computations. ArXiv abs/1907.08607 (2020).
[42] Yifan Sun, Nicolas Agostini, Shi Dong, and David Kaeli. 2019. Summarizing CPU and GPU Design Trends with Product Data.
[43] Alok Tripathy, Fred Hohman, Duen Horng Chau, and Oded Green. 2018. Scalable K-Core Decomposition for Static Graphs Using a Dynamic Graph

Data Structure. In 2018 IEEE International Conference on Big Data (Big Data). 1134–1141. https://doi.org/10.1109/BigData.2018.8622056
[44] Charalampos Tsourakakis. 2015. The K-Clique Densest Subgraph Problem. In Proceedings of the 24th International Conference on World

Wide Web (WWW ’15). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, 1122–1132.
https://doi.org/10.1145/2736277.2741098

[45] Balaji Venu. 2011. Multi-core processors - An overview. (10 2011).
[46] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks. Proceedings of the VLDB Endowment 5 (05 2012). https:

//doi.org/10.14778/2311906.2311909
[47] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks. Proc. VLDB Endow. 5, 9 (May 2012), 812–823.
[48] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient Bitruss Decomposition for Large-scale Bipartite Graphs. 661–672.

https://doi.org/10.1109/ICDE48307.2020.00063
[49] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2021. Towards efficient solutions of bitruss decomposition for large-scale bipartite

graphs. The VLDB Journal (03 2021), 1–24. https://doi.org/10.1007/s00778-021-00658-5
[50] Kai Wang, Wenjie Zhang, Xuemin Lin, Ying Zhang, Lu Qin, and Yuting Zhang. 2020. Efficient and Effective Community Search on Large-scale

Bipartite Graphs. (11 2020).
[51] D. J. Watts and S. H. Strogatz. 1998. Collective dynamics of ’small-world’ networks. Nature 393, 6684 (1998), 409–10.
[52] Yang Zhang and Srinivasan Parthasarathy. 2012. Extracting Analyzing and Visualizing Triangle K-Core Motifs within Networks. (04 2012), 1049–1060.

https://doi.org/10.1109/ICDE.2012.35
[53] Feng Zhao and Anthony Tung. 2012. Large scale cohesive subgraphs discovery for social network visual analysis. Proceedings of the VLDB

Endowment 6, 85–96. https://doi.org/10.14778/2535568.2448942
[54] Zhaonian Zou. 2016. Bitruss Decomposition of Bipartite Graphs. Springer-Verlag, Berlin, Heidelberg. https://doi.org/10.1007/978-3-319-32049-6_14

https://doi.org/10.1109/TPDS.2012.124
https://doi.org/10.1093/gigascience/giy014
https://doi.org/10.14778/3275536.3275540
https://doi.org/10.14778/3275536.3275540
https://doi.org/10.1145/2736277.2741640
https://doi.org/10.1145/2736277.2741640
https://doi.org/10.1109/BigData.2018.8622056
https://doi.org/10.1145/2736277.2741098
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.14778/2311906.2311909
https://doi.org/10.1109/ICDE48307.2020.00063
https://doi.org/10.1007/s00778-021-00658-5
https://doi.org/10.1109/ICDE.2012.35
https://doi.org/10.14778/2535568.2448942
https://doi.org/10.1007/978-3-319-32049-6_14

