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Abstract

In this paper, we extend the result of [1] by calculating some ex-
amples in detail, including the inscribed ellipses in triangles, quadri-
laterals, and pentagons. We also refine the original proof and reduce
the requirements through projective geometry methods in the quadri-
lateral and pentagon cases. Furthermore, we see the inscribed ellipse
problems from the perspective of two projective planes simultaneously,
which offers a new way to determine the inscribed ellipses in triangles.

Keywords: Projective Geometry; Inscribed Ellipse.
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1 Introduction
The ellipses is an important component of high school geometry and

we often use Geogebra, a drawing tool, to visualize ellipses. However,
when we try to draw an inscribed ellipse of a polygon, we can only
draw the ellipse first by assigning five distinct points and then draw
the subscribe polygon. We can not assign the polygon first. This paper
aim to investigate the problem of inscribed ellipse from the view of
tangent line by using projective geometry methods[3] [4] and technics
[2].

1.1 Homogenous Coordinate of Points and Lines
in Projective Plane

Projective Plane is the extension of Euclidean Plane. If we add
infinite points and infinite line to the Euclidean Plane, we will get a
Projective Plane. Each group of parallel lines in the Projective Plane
is defined to meet at a unique infinite point. All the infinite points will
compose the infinite line.

Let R be the field of real number and R2 will stands for Euclidean
plane. Let P 2 be the real projective plane. For each point (x, y) in R2,
we associate it with its homogenous point [x : y : 1] in the P 2. For each
line ax + by + c = 0 in R2, we associate it with its homogeneous line
ax+ by+ ch = 0 in P 2. On line ax+ by+ ch = 0 lies point [−b : a : 0],
which is the infinite point of this line. All the infinite points lie on
line h = 0 at infinity. Since ∀k ∈ Z and k ̸= 0, kax + kby + kch = 0
represents the same line as ax+ by + ch = 0. We can represent a line
using its homogenous coordinate [a : b : 1].

1.2 Duality
We can set up a unique dual relationship between the point Q on

xyh−plane and the line LQ on αβγ−plane.

Q = [x : y : h] ⇐⇒ LQ = Q · (α, β, γ)

Similarly, there is a unique dual relationship between the line LP

on xyh−plane and the point P on αβγ−plane.

LP = P · (x, y, h) ⇐⇒ P = [α : β : γ]

Notice that we can get the coordinate of a point by finding the
partial derivative of the line: ∇LP = P and ∇LQ = Q. The dual of a
homogenous line can be seen as its gradient.

5
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Therefore, for a homogenous curve φ(α, β, γ), we can define its
homogenous dual curve: φ̂(x, y, z) as

φ̂ = {[x : y : z]|∃(α, β, γ) ∈ φ, such that (x, y, z) · (α, β, γ) = 0}

So the homogenous coordinate of φ̂ is same as ∇φ. Therefore, we
can get φ̂ by calculating ∇φ.

Figure 1: Explanation of Duality

1.3 Conic Curve
Since in this paper we mainly focus on conic curves, this section

will introduce some basic knowledge of a conic curve.

6

20
20

 S. -T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward



Definition 1 The collections of points (x1, x2, x3) that satisfy a11x
2
1+

a22x
2
2+a33x

2
3+2a12x1x2+2a13x1x3+2a23x2x3 = 0 are known as conic

curves. Here aij(1 ≤ i < j ≤ 3) are real numbers.

The conic curves can also be represented as

F (x1, x2, x3) = (x1, x2, x3)

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 x1

x2

x3



We often write

 a11 a12 a13
a12 a22 a23
a13 a23 a33

 as A.

1.3.1 Tangent Line of Conic Curve
Let point P (p1, p2, p3) be a point on conic curve

S : (x1, x2, x3)A

 x1

x2

x3

 = 0

Then the equation for the tangent line at P is

(p1, p2, p3)A

 x1

x2

x3

 = 0

2 Duality and Inscribed Ellipses
2.1 Notations and Linfield’s Function

We will use the homogenous coordinate of points and lines defined
in Chapter 1 for later calculation. Here we define homogenous curve
φ = φ(α, β, γ) ∈ P 2 and its homogenous dual curve φ̂ = φ̂(x, y, h) ∈
P 2.

We want to find the inscribed ellipse in polygon Q1Q2Q3 · · ·Qn.
The main idea of the method is to find the ellipse φ that pass the
dual points of the sides of the polygon Q1Q2Q3 · · ·Qn: Pij , where
1 ≤ i < j ≤ n. Then, according to definition of dual curve, the dual
curve φ̂ must be tangent to the sides of the polygon.

In this paper, we will use Linfield’s function [1] as a way to represent
φ:

φ =
n∑

i=1

miL1L2 · · ·Li−1Li+1 · · ·Ln

7
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Here Li is the dual of Qi, and mi is the positive real constant coeffi-
cients that lies in (0, 1). Since Pij is the intersection of Li, Lj and every
term in φ contains at least one of Li and Lj , then φ passes all Pij , where
1 ≤ i < j ≤ n. According to the property of duality, we can know
that φ̂ is tangent to polygon Q1Q2Q3 · · ·Qn, and the tangent points
of φ̂ depend on the tangent lines of φ at Pij . This means the tangent
points of φ̂ can be determined using mi and Qi(1 ≤ i ≤ n). Let the
tangent point on QiQj be Qij . To get the homogenous coordinate of
the tangent point of φ̂, we just need to find the homogenous coordinate
of the tangent line of φ. We can write φ = (miLj +mjLi)X +LiLjY ,
where X,Y are products of polynomials.

∇φ(Pij) = (miQj +mjQi)X(Pij)

Then, we normalize the equation, and get ∇φ(Pij) =
mi

mi+mj
Qj +

mj

mi+mj
Qi.

Therefore, with the information of Qi and mi, we can get the in-
scribed ellipses φ̂ using the Linfield Function. (Shown in Figure 2)

In this paper we will use the Linfield’s function and methods in
projective geometry to extend the following theorem in [1]:

Theorem 1 Ellipses inscribed in convex non -degenerated n-gons:
(1) In triangles, there exists a two-parameter family of inscribed el-
lipses.
(2) In quadrilaterals, there exists a one-parameter family of inscribed
ellipses.
(3) In pentagons, there exists a zero-parameter family of inscribed el-
lipse.
(4) For n ≥ 6, if there exists inscribed ellipse, it is unique.

Also we will refine the proofs provided in [1].

2.2 In triangles, there exists a unique two-parameter
family of inscribed ellipses.

Let T denote the triangle with vertices Q1, Q2, Q3. Using the Lin-
field’s function, we can get a formula for φ

φ = m1L2L3 +m2L1L3 +m3L1L2

To set the three unknown coefficients m1,m2,m3, we need to fix two
parameters 0 < r, s < 0. So that

m1

m2
=

r

1− r
,
m2

m3
=

s

1− s

8
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Figure 2: Explanation of Two Dual Plane

Since we just concern about the ratio , we can set m2 = 1. Then,
m1 = r

1−r ,m3 = 1−s
s . So

φ =
r

1− r
L2L3 + L1L3 +

1− s

s
L1L2

We fix r, s by fixing the tangent point on T. Let the points at which φ̂
tangent to T be Q12 (on side Q1Q2) and Q23 (on side Q2Q3). Q12 =
(1 − r)Q1 + rQ2, Q23 = (1 − s)Q2 + sQ3. Since φ is quadratic, φ̂
is also quadratic, and it tangent to T at all three sides. As r, s are
all changeable parameters, the inscribed ellipses form a two-parameter
family.(Shown in Figure 3)

Because the inscribed ellipses depend on two parameters, then we
can set up the relationship between these two parameters by letting
the ellipses pass a certain point. Then we will get a unique family of
one-parameter ellipse that is inscribed in the triangle T . This part will
show explicitly in 2.2.2.

2.2.1 An Example of Triangle Case
We can set Q1 = [−1 : 0 : 1], Q2 = [1 : 0 : 1], Q3 = [0 : 1 : 1],

and Linfield’s function is φ(α, β, γ) = m3(−α+ γ)(α+ γ) +m2(−α+
γ)(β + γ) + m1(α + γ)(β + γ). Denote (x, y, h) as a point on φ̂, so

9

20
20

 S. -T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

e A
ward



Figure 3: Triangle Case

(x, y, h) = ∇φ(α, β, γ). Therefore, we can get

x =− 2m3α+ (m1 −m2)β + (m1 −m2)γ

y =(m1 −m2)α+ (m1 +m2)γ

h =(m1 −m2)α+ (m1 +m2)β + 2(m1 +m2 +m3)γ

Solving the equations above, we can get

8m1m2m3α =− (m1 +m2)
2x− (m2

1 −m2
2 + 2m3(m1 −m2))y + (m2

1 −m2
2)h

8m1m2m3β =(m2
1 −m2

2 + 2m1m3 − 2m2m3)x− (m2
1 +m2

2 + 4m2
3 − 2m1m2+

4m1m3 + 4m2m3)y + (m2
1 +m2

2 − 2m1m2 + 2m1m3 + 2m2m3)h

8m1m2m3γ =(m2
1 −m2

2)x+ (m2
1 +m2

2 − 2m1m2 + 2m1m3 + 2m2m3)y−
(m2

1 +m2
2 − 2m1m2)h

Because m1m2m3 ̸= 0, the equations can be simplified to be

α =− (m1 +m2)
2x+ (m2

1 −m2
2 + 2m1m3 − 2m2m3))y − (m2

1 −m2
2)h

β =(m2
1 −m2

2 + 2m1m3 − 2m2m3)x− (m2
1 +m2

2 ++4m2
3 − 2m1m2+

4m1m3 + 4m2m3)y + (m2
1 +m2

2 − 2m1m2 + 2m1m3 + 2m2m3)h

γ =(m2
1 −m2

2)x+ (m2
1 +m2

2 − 2m1m2 + 2m1m3 + 2m2m3)y − (m2
1 +m2

2 − 2m1m2)h

Substitute these values into φ, we can get φ̂

10
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φ̂ =− 4m1m2m3(h
2(m1 −m2)

2 +m2
1(x+ y)2 + 2m1(x+ y)(m2(x− y) + 2m3y)

+ (2m3y +m2(−x+ y))2 − 2h(2m1(−m2 +m3)y +m2
1(x+ y) +m2(−m2x

+m2y + 2m3y)))

De-homogenize the formula we can get

φ̂ =− 4m1m2m3((m1 −m2)
2 +m2

1(x+ y)2 + 2m1(x+ y)(m2(x− y) + 2m3y)

+ (2m3y +m2(−x+ y))2 − 2(2m1(−m2 +m3)y +m2
1(x+ y) +m2(−m2x

+m2y + 2m3y)))

Substitute m1 for r
1−r , m2 for 1, m3 for 1−s

s .

φ̂ =− 1

(−1 + r)3s3
4r(−1 + s)(4(−1 + r)2y2 − 4(−1 + r)sy(−1 + (−1 + 2r)x+ (−1 + 2r)y)

+ s2((1 + x+ y)2 − 4r(1 + x− y + 2xy + 2y2) + r2(4 + 8(−1 + x)y + 8y2)))

Setting (r, s) = ( 27 ,
1
4 ), (

1
2 ,

1
3 ), (

2
3 ,

3
5 ), we can get the flowing picture,

which we can see that the ellipse φ̂ are tangent to the triangle. (Shown
in Figure 4: Ellipse1:(r, s) = ( 27 ,

1
4 ), Ellipse2:( 12 ,

1
3 ), Ellipse3:( 23 ,

3
5 ))

Figure 4: The Example of Triangle Case
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2.2.2 The Extension of Triangle Case Example
There are still two possible family of ellipse in the case of triangle.

Since the constraints we have put on the ellipse is about the tangent
points, we now try to add constraints about fix points that the ellipse
passes through. This will involve considering two projective planes
simultaneously.

Let the ellipse φ̂ in the example pass [0 : 1
2 : 1]. Then we can get

φ̂[0: 12 :1]
=− 1

(−1 + r)3s3
4r(−1 + s)(4(−1 + r)2(

1

2
)2 − 4(−1 + r)s(

1

2
)(−1 + (−1 + 2r)(

1

2
))

+ s2((1 +
1

2
)2 − 4r(1− 1

2
+ 2(

1

2
)2) + r2(4− 8(

1

2
) + 8(

1

2
)2))) = 0

Simplify it, we will get

− 1

(−1 + r)3s3
r(−1+s)(4−8r+4r2−12s+20rs−8r2s+9s2−16rs2+8r2s2) = 0

From this equation, we can get a relationship between r and s.

s =
2
(
2r2 − 5r + 3− 2

√
−r4 + 3r3 − 3r2 + r

)
8r2 − 16r + 9

or
s =

2
(
2r2 − 5r + 3 + 2

√
−r4 + 3r3 − 3r2 + r

)
8r2 − 16r + 9

Then we can reduce the original expression of φ̂ into an expression
that only relies on one parameter r.

When s =
2(2r2−5r+3−2

√
−r4+3r3−3r2+r)

8r2−16r+9 , plug in r = 1
3 , and we can

get the the ellipse:

1

8
(−9(2

√
2 + 3)x2 + 2x(2(9

√
2 + 13)y − 6

√
2− 9)−

(2y − 1)(6(12
√
2 + 17)y − 2

√
2− 3)) = 0

This is shown in Figure 5 (Ellipse 1).
Similarly, when s =

2(2r2−5r+3+2
√
−r4+3r3−3r2+r)

8r2−16r+9 , plug in r = 1
3 ,

and we can get the the ellipse:

1

8
(9(2

√
2− 3)x2 − 2x(2(9

√
2− 13)y − 6

√
2 + 9)+

(2y − 1)(6(12
√
2− 17)y − 2

√
2 + 3)) = 0

This is shown in Figure 5 (Ellipse 2).
From the figure we can see that the two ellipses share one same

tangent point. The reason behind this phenomenon is a left question
to be discussed.

12
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Actually, we can make φ̂ to pass another point to determine the
value of r, but we can not ensure that there is always a real solution to
the equation. However, there will always be an ellipse that is tangent
to three non-parallel lines and pass two distinct points in the complex
plane.

Figure 5: The Extension of Triangle Case Example

2.3 In quadrilaterals, there exists a unique one-
parameter family of inscribed ellipses.

Let Q denote the quadrilateral with vertices Q1, Q2, Q3, Q4. Using
the Linfield’s function, we can get a formula for φ

φ = m1L2L3L4 +m2L1L3L4 +m3L1L2L4 +m4L1L2L3

WLOG, we can assume that the intersection of diagonals Q2Q4,
Q1Q3 is the origin.(Figure 6 ) Therefore, we will have two constraint

(1− θ)Q1 + θQ3 = [0 : 0 : 1], (1− ϕ)Q2 + ϕQ4 = [0 : 0 : 1] (1)

where 0 < θ, ϕ < 1.
So we just need to fix one parameter 0 < r < 0, and

m1

m2
=

r

1− r
,
m2

m4
=

ϕ

1− ϕ
,
m1

m3
=

θ

1− θ

13
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Let m2 = 1, we can get m1 = r
1−r ,m3 = r(1−θ)

θ(1−r) ,m4 = 1−ϕ
ϕ .

We can write out the dual of the constraints in equation 1

(1− θ)L1 + θL3 = γ, (1− ϕ)L2 + ϕL4 = γ

Then we can represent L2, L3 using L4, L1

L3 =
γ − (1− θ)L1

θ
, L2 =

γ − ϕL4

1− ϕ

Therefore,

φ = (m2L4+m4L2)L1L3+(m1L3+m3L1)L4L2 =
γ

ϕ
L1L3+

rγ

θ(1− r)
L4L2

Then, φ = γ
(1−r)θϕ ((1 − r)θL1L3 + rϕL2L4). The dual of the first

part γ
(1−r)θϕ is the origin and the dual of the second part (1−r)θL1L3+

rϕL2L4 is an ellipse that tangent to the four sides of Q from the inte-
rior.

Figure 6: Quadrilateral Case

2.3.1 An Example of Quadrilateral Case
Let the original quadrilateral be A1A2A3A4, with A1 = [2 : 2 :

1], A2 = [3 : 1 : 1], A3 = [0 : 0 : 1], A4 = [0 : 1 : 1]. In order to
put the intersection of the diagonals to the origin, we translate the
quadrilateral into Q1Q2Q3Q4, with Q1 = [1 : 1 : 1], Q2 = [2 : 0 :

14
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1], Q3 = [−1 : −1 : 1], Q4 = [−1 : 0 : 1].Then θ = 1
2 , ϕ = 2

3 . Suppose
m2 = 1, we can get m1 = r

1−r ,m2 = 1,m3 = r
1−rm4 = 1

2 .

φ =(m2L4 +m4L2)L1L3 + (m1L3 +m3L1)L4L2 =
3

2
γL1L3 +

2r

1− r
γL4L2

=
3γ

1− r
(
1

2
(1− r)L1L3 +

2

3
rL4L2)

So the quadratic part of is

φ =
1

2
(1− r)(α+ β + γ)(−α− β + γ) +

2

3
r(−α+ γ)(2α+ γ)

Then,

φ = −α2

2
− αβ − β2

2
+

γ2

2
− 5α2r

6
+ αβr +

2αγr

3
+

β2r

2
+

γ2r

6

Denote (x, y, h) as a point on φ̂。Because φ̂ = ∇φ, then (x, y, h) =
∇φ(α, β, γ). As a result, we can get

x =− 1

3
α(5r + 3) + β(r − 1) +

2γr

3
y =(r − 1)(α+ β)

h =
2r

3
α+

3 + r

3
γ

As a result, x
y
h

 =

− 3+5r
3 ,−1 + r , 2r

3
−1 + r ,−1 + r , 0

2r
3 , 0 , 3+r

3

 ·

α
β
γ


Solving this matrix ,we can get

(−4r3

3
− 4r2

3
+

8r

3
)α =(

r2

3
+

2r

3
− 1)x+ (−r2

3
− 2r

3
+ 1)y + (−2r2

3
+

2r

3
)h

(−4r3

3
− 4r2

3
+

8r

3
)β =(−r2

3
− 2r

3
+ 1)x+ (−r2 − 2r − 1)y + (

2r2

3
− 2r

3
)h

(−4r3

3
− 4r2

3
+

8r

3
)γ =(−2r2

3
+

2r

3
)x+ (

2r2

3
− 2r

3
)y + (−8r2

3
+

8r

3
)h

Because 0 < r < 1, − 4r3

3 − 4r2

3 + 8r
3 ̸= 0.

Simplify the equations

α =(r2 + 2r − 3)x+ (−r2 − 2r + 3)y + (−2r2 + 2r)h

β =(−r2 − 2r + 3)x+ (−3r2 − 6r − 3)y + (2r2 − 2r)h

γ =(−2r2 + 2r)x+ (2r2 − 2r)y + (−8r2 + 8r)h

15
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Figure 7: The Example of Quadrilateral Case

Substituting these value into φ, we will get the dual of φ

φ̂ =2r(r2 + r − 2)(8h2(r − 1)r + 4h(r − 1)r(x− y)− (r2 + 2r − 3)x2

+ 2(r2 + 2r − 3)xy + 3(r + 1)2y2)

De-homogenizing the formula, we can get

φ̂ =2r(r2 + r − 2)(8(r − 1)r + 4(r − 1)r(x− y)− (r2 + 2r − 3)x2

+ 2(r2 + 2r − 3)xy + 3(r + 1)2y2)

Let r = 1
2 , we can get Figure 7.

2.4 In pentagons, there exists a unique zero-parameter
family of inscribed ellipses.

Let P denote the pentagon with vertices Q1, Q2, Q3, Q4, Q5. Using
the Linfield’s function, we can get a formula for φ

φ = m1L2L3L4L5+m2L1L3L4L5+m3L1L2L4L5+m4L1L2L3L5+m5L1L2L3L4

16
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First, for every pentagon Q1Q2Q3Q4Q5, we can extend side Q1Q5

and Q3Q4 that will interact at Q0. Then the big ellipse can be seen
as inscribed in quadrilateral Q0Q1Q2Q3. On the other hand, we can
generate Q1Q2Q3Q4Q5 by adding an edge Q4Q5 that is tangent to the
ellipse, and Q4 is on Q0Q3 and Q5 is on Q0Q1 Therefore, we just need
to show that the ellipse we get from the quadrilateral case can be set
to tangent to line Q4Q5. (Shown in Figure 8)

From the quadrilateral case, we know that we can write the big el-
lipse as φ1 = (1−r)θL1L3+rϕL0L2. Because of the property of duality,
L1L3(P45) = Q4Q5(Q1)Q4Q5(Q3). Since Q1, Q3 are on the same side
of line Q4Q5, Q4Q5(Q1) and Q4Q5(Q3) are both positive or negative.
Then L1L3(P45) = Q4Q5(Q1)Q4Q5(Q3) > 0. Similarly, because of the
property of duality, L0L2(P45) = Q4Q5(Q0)Q4Q5(Q2). Since Q0, Q2

are on the different sides of line Q4Q5, Q4Q5(Q0) and Q4Q5(Q2) have
one positive and one negative number. Then L0L2(P45) = Q4Q5(Q0)Q4Q5(Q2) <
0. As a result, we can always find and r ∈ (0, 1) such that φ1(P45) =
(1− r)θL1L3(P45) + rϕL0L2(P45) = 0, which means that φ1 pass the
dual of line Q4Q5. So φ̂1 tangent to five sides of Q1Q2Q3Q4Q5.

Since φ and φ1 are both tangent to the pentagon P , we know that

∇φ(P12) ∝ ∇φ1(P12);∇φ(P23) ∝ ∇φ1(P23);

∇φ(P015) ∝ ∇φ1(P015);∇φ(P034) ∝ ∇φ1(P034)

As φ is a curve of fourth power, φ1 is proportional to φ with these
constraints. Therefore, φ has a quadratic branch that is tangent to
the pentagon Q1Q2Q3Q4Q5.

2.4.1 An Example of Pentagon Case
Consider the pentagon Q1Q2Q3Q4Q5, where Q1 = [0 : 2 : 1], Q2 =

[1 : 0 : 1], Q3 = [0 : −2 : 1], Q4 = [−1 : −1 : 1], Q5 = [−1 : 1 : 1]. Then

φ =m1(α+ γ)(−2β + γ)(−α− β + γ)(−α+ β + γ)

+m2(2β + γ)(−2β + γ)(−α− β + γ)(−α+ β + γ)

+m3(2β + γ)(α+ γ)(−α− β + γ)(−α+ β + γ)

+m4(2β + γ)(α+ γ)(−2β + γ)(−α+ β + γ)

+m5(2β + γ)(α+ γ)(−2β + γ)(−α− β + γ)

Extend Q1Q5, Q3Q4 and meet at Q0, so Q0 = [−2 : 0 : 1].
From the quadrilateral case, we can know φ1 is inscribed in Q0Q1Q2Q3.

In this case, θ = 1
2 , ϕ = 1

3 . So φ1 = 1−r
2 L1L3 +

r
3L0L2 = 1−r

2 (2β +
γ)(−2β + γ) + r

3 (−2α + γ)(α + γ). Now, I just need to prove that
φ1 pass the dual of Q4Q5, which is P45. Because the expression for
Q4Q5 is α + γ = 0, then P45 = [1 : 0 : 1]. Therefore φ1(P45) =
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Figure 8: Pentagon Case

1−r
2 (1)(1) + r

3 (−1)(2) = 1−r
2 − 2

3r. As a result, r = 3
7 satisfy the

requirement that φ1 pass P45.

φ1 =
1

7
(−2α2 − 8β2 − αγ + 3γ2)

Denote (x, y, h) as a point on φ̂1. Because φ̂1 = ∇φ1, then (x, y, h) =
∇φ1(α, β, γ). As a result, we can get

x =− 4

7
α− 1

7
γ

y =− 16

7
β

h =− 1

7
α+

6

7
γ

Solve these equations for α, β, γ:

400

343
α =− 96

49
x− 16

49
h

400

343
β =− 25

49
y

400

343
γ =− 16

49
x+

64

49
h
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Figure 9: The Example of Pentagon Case

Since we just consider the ratio , we can simplify the equations into

α =− 96x− 16h

β =− 25y

γ =− 16x+ 64h

Therefore,

φ̂1 = −200

7
(96x2 + 25y2 + 32xh− 64h2)

De-homogenizing the formula, we can get

φ̂1 = −200

7
(96x2 + 25y2 + 32x− 64)

It is the inscribed ellipse we want. (Figure 9)

2.4.2 Some Other Things to Discuss
Actually, we can deduce quadrilateral case based on triangle case

using the similar method that we use when deducing pentagon case.
However, in this case we will have a completely different form of φ1 and
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Figure 10: Explanation of The Deduction Quadrilateral Case

we can not continue the deduction to pentagon. This is a left question
to answer.

The deduction from triangle to quadrilateral is produced as follow.
Let Q denote the quadrilateral with vertices Q1, Q2, Q3, Q4. (Shown
in Figure 10) Using the Linfield’s function, we can get a formula for φ

φ = m1L2L3L4 +m2L1L3L4 +m3L1L2L4 +m4L1L2L3

We can extend Q1Q4 and Q2Q3 to meet at Q0.
From the triangular case, there is a two-parameter family of in-

scribed ellipse φ1 = r
1−rL0L2 +L0L1 +

1−s
s L1L2. I will prove that we

can choose proper s to make φ1 pass the dual of Q3Q4, which is P34.
Since Q1, Q2 are on the same side of Q3Q4 and are on the different

side with Q0, we can get Q3Q4(Q1)Q3Q4(Q2) > 0, Q3Q4(Q0)Q3Q4(Q1) <
0,and Q3Q4(Q0)Q3Q4(Q2) < 0, which means L1L2(P34) > 0, L0L1(P34) <
0, and L0L2(P34) < 0. Because 0 < r, s < 1, then we can get all pos-
itive real number by choosing proper r and s for r

1−r ,
1−s
s . There-

fore, for every r, we can always find a corresponding s such that
r

1−rL0L2 + L0L1 +
1−s
s L1L2 = 0
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According to the formula of the tangent point, we can know that

∇φ(P12) ∝ ∇φ1(P12),∇φ(P23) ∝ ∇φ1(P23),∇φ1(P14) ∝ ∇φ1(P14)

Because φ is a cubic curve, φ is proportional to φ1

Therefore, there is a one-parameter ellipse that tangent to the four
sides of Q from the interior.
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