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Abstract

In this paper, we extend the result of [1] by calculating some ex-
amples in detail, including the inscribed ellipsestin triangles, quadri-
laterals, and pentagons. We also refine the original proof and reduce
the requirements through projective geometry'niethods in the quadri-
lateral and pentagon cases. Furthermore! we see the inscribed ellipse
problems from the perspective of two projeetive planes simultaneously,
which offers a new way to determinesthe“inscribed ellipses in triangles.
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1 Introduction

The ellipses is an important component of high school geometry and
we often use Geogebra, a drawing tool, to visualize ellipses. However,
when we try to draw an inscribed ellipse of a polygon, we can only
draw the ellipse first by assigning five distinct points and then draw
the subscribe polygon. We can not assign the polygon first. This paper
aim to investigate the problem of inscribed ellipse from the view of
tangent line by using projective geometry methods|[3] [4] and technics
[2].

1.1 Homogenous Coordinate of Points and .Lines
in Projective Plane

Projective Plane is the extension of Euclidean Plane.) If we add
infinite points and infinite line to the Euclidean Plame)ywe will get a
Projective Plane. Each group of parallel lines in“the Projective Plane
is defined to meet at a unique infinite point. All'the)infinite points will
compose the infinite line.

Let R be the field of real number and /R*will stands for Euclidean
plane. Let P? be the real projective plane\For each point (x,y) in R2,
we associate it with its homogenous peint'[x : y : 1] in the P?. For each
line ax + by + ¢ = 0 in R?, we associate it with its homogeneous line
ar +by+ch =0in P2. On liné aa + by + ch = 0 lies point [~b : a : 0],
which is the infinite point ofythis line. All the infinite points lie on
line h = 0 at infinity. Since Vk/€ Z and k # 0, kax + kby + kch = 0
represents the sameline as ax + by + ch = 0. We can represent a line
using its homogenous coordinate [a : b : 1].

1.2 Duality

We can set up a unique dual relationship between the point @) on
xyh&plane and the line Lg on afy—plane.

Q:[l'yh} — LQ:Q(a;ﬁ;’Y)

Similarly, there is a unique dual relationship between the line Lp
on zyh—plane and the point P on afy—plane.

Lp=P- (z,y,h) < P=[a:p:7]

Notice that we can get the coordinate of a point by finding the
partial derivative of the line: VLp = P and VLg = Q. The dual of a
homogenous line can be seen as its gradient.



Therefore, for a homogenous curve ¢(a, §,7), we can define its
homogenous dual curve: ¢(z,y, z) as

o ={[z:y:2]|3a,B,7) € p,such that (z,y,2) - (a, 8,7) = 0}

So the homogenous coordinate of ¢ is same as V. Therefore, we
can get ¢ by calculating V.

E
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Q
Lo\
B |
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Figure 1: Explanation of Duality

1.3 Conic Curve

Since in this paper we mainly focus on conic curves, this section
will introduce some basic knowledge of a conic curve.



Definition 1 The collections of points (x1, 2, x3) that satisfy a;123 +
aggx%+a33x§+2a12m1x2+2a13x1x3+2a23x2x3 = 0 are known as conic
curves. Here a;;(1 <1i < j < 3) are real numbers.

The conic curves can also be represented as

aiy a2 G13 x1
F(x1,22,23) = (x1,22,23) | a12 a2 a3 T2
@13 a23 @33 T3

a1 a2 a13
We often write a1y Q2o (23 as A.
a1z dag3 as3

1.3.1 Tangent Line of Conic Curve

Let point P(p1,p2,ps) be a point on conic curve

T
S (.131,$2,JL‘3)A T =0
3

Then the equation for the tangent liné at P is

T

(p1,p2,23)A | 22 | =0
T3

2 Duality 'and Inscribed Ellipses

2.1 Notations and Linfield’s Function

We will use the homogenous coordinate of points and lines defined
in Chapter 1 for later calculation. Here we define homogenous curve
0 = o(a, B,7) € P? and its homogenous dual curve ¢ = ¢(z,y,h) €
B2,

We want to find the inscribed ellipse in polygon Q1Q2Q3 - Q.
The main idea of the method is to find the ellipse ¢ that pass the
dual points of the sides of the polygon Q1Q2Q3---Qy,: P;;, where
1 < ¢ < j <n. Then, according to definition of dual curve, the dual
curve ¢ must be tangent to the sides of the polygon.

In this paper, we will use Linfield’s function [1] as a way to represent

[V2h

o= ZmiLlLQ o Li 1Liy1-+ Ly
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Here L; is the dual of Q;, and m; is the positive real constant coeffi-
cients that lies in (0,1). Since P;; is the intersection of L;, L; and every
term in ¢ contains at least one of L; and L;, then ¢ passes all F;;, where
1 <4 < j < n. According to the property of duality, we can know
that ¢ is tangent to polygon Q1Q2Qs - Q,, and the tangent points
of ¢ depend on the tangent lines of ¢ at P;;. This means the tangent
points of ¢ can be determined using m; and Q;(1 < i < n). Let the
tangent point on Q;Q; be @;;. To get the homogenous coordinate of
the tangent point of ¢, we just need to find the homogenous coordinate
of the tangent line of p. We can write o = (m;L; +m;L;) X + L;L;Y;
where X, Y are products of polynomials.

Vo(Pij) = (miQ; +m;Qi) X (P;))
Then, we normalize the equation, and get Vo(Py;) = #’m]_@j +

"0,
m;+m;
Tﬁerefore7 with the information of Q; and my, we can get the in-
scribed ellipses ¢ using the Linfield Function. (Shown in Figure 2)
In this paper we will use the Linfield’sfunetion and methods in

projective geometry to extend the following theorem in [1]:

Theorem 1 FEllipses inscribed in ¢onvex) non -degenerated n-gons:
(1) In triangles, there exists a two parameter family of inscribed el-
lipses.

(2) In quadrilaterals, there exists’a one-parameter family of inscribed
ellipses.

(3) In pentagons, there exists'a zero-parameter family of inscribed el-
lipse.

(4) For n > 6, if there exists inscribed ellipse, it is unique.

Also we willirefine the proofs provided in [1].

2.2% Inrtriangles, there exists a unique two-parameter
family of inscribed ellipses.

Let T denote the triangle with vertices @1, Q2, Q3. Using the Lin-
field’s function, we can get a formula for ¢
o =miLaL3+mali L3+ m3Li Lo
To set the three unknown coefficients mi, mo, ms3, we need to fix two
parameters 0 < r,s < 0. So that

ma r mo S

mo 1—7r" ms 1—s



Figure 2: Explanation ofsTwo Dual Plane

Since we just concern abeut~the ratio , we can set mo = 1. Then,

— _r _ 1-s
my = ﬁ,mg—T. So

p= z LolLs+ LiLs+ QLlLQ
T—r s

We fix r, s by fixing the tangent point on T. Let the points at which ¢
tangent to T’ be @12 (on side Q1Q2) and Q23 (on side Q2Q3). Q12 =
(1 — Q1=+ wQ2,Q23 = (1 — s)Q2 + sQ3. Since ¢ is quadratic, ¢
is also quadratic, and it tangent to T at all three sides. As r, s are
all/changeable parameters, the inscribed ellipses form a two-parameter
family.(Shown in Figure 3)

Because the inscribed ellipses depend on two parameters, then we
can set up the relationship between these two parameters by letting
the ellipses pass a certain point. Then we will get a unique family of
one-parameter ellipse that is inscribed in the triangle 7. This part will
show explicitly in 2.2.2.

2.2.1 An Example of Triangle Case

Wecanset Q1 = [-1:0:1],Q2=[1:0:1],Q3 =[0:1:1],
and Linfield’s function is p(«, 38,7) = ms(—a+v)(a + ) + ma(—a +
NB+v) +mi(a+7)(8 + 7). Denote (x,y,h) as a point on @, so



Figure 3: Trianglé Case

(z,y,h) = Vo(a, B,7). Therefore, we can get

x = —2mza+ (m1 = mo)B + (m1 — ma)y
y =(m1 — ma)a 4 (Mg # ma)y
h =(my — mp)a % (m1 + ma)B + 2(my + ma + m3)y
Solving the equations above, we can get

2 2

8myimamaa’="{ (m1 +ma)?x — (m?3 —m3 + 2mz(my — ma))y + (m} —m3)h
8mimamsf =(mi — m3 + 2mymg — 2maoms)x — (m3 +m3 + 4m3 — 2myma+
4myms + 4mams)y + (m? +m3 — 2myma + 2myms + 2mams)h
8mymamzy =(m3 —m2)x + (m? + m3 — 2myimsa + 2myms + 2maoms)y—
(m? +m3 — 2myms)h

Because mimams # 0, the equations can be simplified to be

a=—(m; + mg)Qm + (m% — m% + 2mymg — 2maoms))y — (m% — m%)h

(m3 —m3 + 2myms — 2mams)z — (m? + m3 + +4m3 — 2mymo+

4myms + 4mams)y + (m? +m3 — 2myma + 2myms + 2mams)h

v =(m? —m2)x + (m? + m2 — 2myma + 2mims + 2moms3)y — (m3 4+ m2 — 2myma)h

Substitute these values into ¢, we can get ¢

10



¢ = — dmymamz(h*(m1 — m2)? + mi(z 4+ y)* + 2my (x + y)(ma(z — y) + 2m3y)
+ (2msy + ma(—x +))? — 2h(2m1 (—ma + m3)y + m3 (z + y) + mo(—max
+ may + 2msy)))
De-homogenize the formula we can get
@ = — dmyimams((my — ma)? + m3(x + y)* + 2my (z + y)(ma(z — y) + 2miay)
+ (2may + ma(—z +y))* = 2(2ma(—=ma + ma)y + mi(z + y) + me(—Mmaz
+ may + 2m3y)))

Substitute m, for -, my for 1, ms for %

. 1
L (=1+7r)3s3
+ 52((1 + o+ y)2 —dr(l4+z—y+2zy+ 2y2) + r2(4 +8(—1+4z)y+ 8y2)))

dr(—=1 4 8)(4(=1+ 7)Y —d(—=148r)syl—1+ (=1 + 2r)x + (=1 + 2r)y)

Setting (r,s) = (%,1). (3, 3), (3, 2), we can get the flowing picture,
which we can see that the ellipse ¢ are tangent.to the triangle. (Shown
in Figure 4: Ellipsel:(r,s) = (%, i), Ellipse2:(%, %), EllipseS:(%, %))

Figure 4: The Example of Triangle Case

11



2.2.2 The Extension of Triangle Case Example

There are still two possible family of ellipse in the case of triangle.
Since the constraints we have put on the ellipse is about the tangent
points, we now try to add constraints about fix points that the ellipse
passes through. This will involve considering two projective planes
simultaneously.

Let the ellipse ¢ in the example pass [0 : % : 1]. Then we can get

Gy = = g 1 AL+ G — AL+ s L 1+ 20) ()

F2((1 )7 — (1= 5+ 2(0)7) (4 - 8(3) + 85 =0

Simplify it, we will get
1
fmr(fﬁrs)(478r+4r2712s+207"sf8r25+952~167’52+8r2$2) =0

From this equation, we can get a relationship between r and s.

2 (2r? — 5r 43 — 2/ A 3r3 - 3r2 + 1)
8r2 — 167 +'9

S =

or

2(27"2—57"—1—3—1—2\/—7"44—37"3—37"24—7')
8r2= 16r + 9

Then we can reduce the original expression of ¢ into an expression

that only relies on one parameter r.
2(2r% —5r%3—2v/— 131 3r3—3r24r
When s = ( )

8r2—167+9
get the the ellipse:

S =

,pluginr = %, and we can

1
g(‘9(2ﬁ +3)2? + 22(2(9vV2 + 13)y — 6v2 — 9)—
(2y — 1)(6(12V2 +17)y —2v/2 - 3)) =0

This is shown in Figure 5 (Ellipse 1).

2(2r? —5r+3+2v/—rT+3r3—3r2Fr)
8r2—167+9

Similarly, when s = , plug in r = %7

and we can get the the ellipse:

%(9(2¢§ —3)2? —22(2(9V2 — 13)y — 6v2 + 9)+

(2y — 1)(6(12v2 — 17)y — 2v/2+3)) =0

This is shown in Figure 5 (Ellipse 2).

From the figure we can see that the two ellipses share one same
tangent point. The reason behind this phenomenon is a left question
to be discussed.

12



Actually, we can make ¢ to pass another point to determine the
value of r, but we can not ensure that there is always a real solution to
the equation. However, there will always be an ellipse that is tangent
to three non-parallel lines and pass two distinct points in the complex
plane.

Q, =(0,1)

Ellipsel

Q, = (1,0)

Figure 5: The Extension of Triangle Case Example

2.3 In quadrilaterals, there exists a unique one-
parameter family of inscribed ellipses.

Let @ dengpte the quadrilateral with vertices @1, @2, @3, Q4. Using
the Finfield’s function, we can get a formula for ¢

@ =miLoL3Ly +moLiL3Ly+maLliLoLy +myl Lol

WLOG, we can assume that the intersection of diagonals Q2Qy4,
Q1 Qs is the origin.(Figure 6 ) Therefore, we will have two constraint

(1-0)Q:1+0Q3=[0:0:1],(1-¢)Q2+¢Qs=1[0:0:1] (1)

where 0 < 0, ¢ < 1.
So we just need to fix one parameter 0 < r < 0, and

my T mg 10) my 0

ms l—r'ms 1—¢' mg 1-0

13



Let ma = 1, we can get my = 1=, m3 = %,m;; = %

We can write out the dual of the constraints in equation 1
(1-0)L1+0Ls=7,(1—¢)La+ ¢Lsa=1

Then we can represent Lo, Lg using Ly, Ly

T—(1-0)L, v — oLy
L == L =
3 0 y L2 1_ ¢
Therefore,
_ _7 ry
Y = (m2L4+m4L2)L1L3+(m1L3+m3L1)L4L2 = $L1L3+*—~9(1 N r) L4L2

Then, Y = W((l — ’/‘)9[41[43 + T¢L2L4). The dualef the first
part W is the origin and the dual of the second part (L+r)0L; L3+

r¢LaLy is an ellipse that tangent to the four sides of Q@ Arom the inte-
rior.

Figure 6: Quadrilateral Case

2.3.1 An Example of Quadrilateral Case

Let the original quadrilateral be A1 Ay A3Ay, with A; = [2: 2 :
1,A2 = 3:1:1,A3 =1[0:0:1],44 = [0 : 1 : 1]. In order to
put the intersection of the diagonals to the origin, we translate the
quadrilateral into Q1Q2Q3Q4, with @1 =1 : 1 :1],Q2 = [2: 0 :

14



1,Qs =[-1:-1:1,Q4s =[-1:0:1.Then § = §,¢ = 2. Suppose

mg =1, we can get m; = 1=, mz = 1,m3 = ;5.my =

N

3 2r
© :(m2L4 + m4L2)L1L3 + (m1L3 + mng)L4L2 = §7L1L3 + ﬁ/}/LALLQ
3 1 2
=7 jr(i(l —r)L1Ls + gTL4L2)

So the quadratic part of is

p=5(1=r)a+f+7)(~a—f+7)+ 2r(~at7)(2a+7)

Then,
o? B2 4% 5a?r 2ayr. BPry

L I T R U TER s

Denote (z,y, h) as a point on ¢, Because p =V, then (z,y,h) =
Vo(a,B,7). As a result, we can get

1 2vr
x:—§a(5r+3)+ﬁ(r—1)+%
y=(r—-1)(a+3)
h—%a+3+r
3 QY
As a result,
T —3+35T ,—l+r 5 o
y =l+r ,—1+r ,0 B
2r 3+r
h 3 05 v
Solving this matrix ,we can get
4¢3 49?27 8r r? 2 r2 2 2r?  92r
— A —+ —Ja=(—+—-1 - = —+1 —— 4+ —)h
8 g tgle=(g g —De+tl-g -5 +hy+(-5+3)
4737 492 8r r2 2 2r?2  2r
- — 4+ — - = —+1 —r?2—9r—1 — — —)h
(o -+ = = T e (P =2 — Dy (- — )
43 4?2 8r 2r2  9r 22 2r 82 8
s S T VAR A Bl 2 =2 BTN A
(o S =T+ e (= Dy (- + )

3 2
Because0<r<1,—%—%+%r7é0.

Simplify the equations

(r* +2r —3)z 4 (—r% = 2r + 3)y + (=2r* + 2r)h
(=12 = 2r 4+ 3)a + (=3r? — 6r — 3)y + (2r? — 2r)h
(=272 4+ 2r)x + (2r® — 2r)y + (—8r® 4+ 8r)h

«
B
v

15



Q,=(-1,0) \ Q,=(2,0)

q Ellipse: —(5 / 4) (-2 = x + (7x2) / 4 +y - (Ixy) / 2 + (27y%),/.4) = 0
23

Figure 7: The Examplesof Quadrilateral Case

Substituting these valuelinto ¢, we will get the dual of ¢

¢ =2r(r* +r —2)(8h* @ — 1)r +4h(r — Vr(z —y) — (r* + 2r — 3)2?
+2(r? + 21 3)zy + 3(r + 1)%y?)

De-hemeogenizing the formula, we can get
O =2r(r* +r —2)(8(r — Dr +4(r — Dr(x —y) — (r* + 2r — 3)2?
+2(r% +2r — 3)ay + 3(r + 1)%?)

Let r = %, we can get Figure 7.

2.4 In pentagons, there exists a unique zero-parameter
family of inscribed ellipses.

Let P denote the pentagon with vertices @1, Q2, @3, Q4, Q5. Using
the Linfield’s function, we can get a formula for ¢

©=myLoL3LyLs+moLiL3LyLs+m3aLyiLoLyLs+malyLoL3Ls+msLiLoL3Ly

16



First, for every pentagon QQ1Q2Q3Q4Q5, we can extend side Q1 Q5
and @Q3Q4 that will interact at @g. Then the big ellipse can be seen
as inscribed in quadrilateral QoQ1Q2Q3. On the other hand, we can
generate Q1Q2Q3Q41Qs by adding an edge (Q4Q5 that is tangent to the
ellipse, and Q4 is on Q@3 and Q5 is on Qo1 Therefore, we just need
to show that the ellipse we get from the quadrilateral case can be set
to tangent to line @Q4Q5. (Shown in Figure 8)

From the quadrilateral case, we know that we can write the big el-
lipse as @1 = (1—7)0 L1 L3+r¢LoLy. Because of the property of duality,
L1L3(Py5) = QuQ5(Q1)Q4Q5(Qs3). Since Q1, Q3 are on the same side
of line Q4Qs5, Q1Q5(Q1) and Q4Q5(Q3) are both positive or negative:
Then L1L3(P45> = Q4Q5<Q1>Q4Q5(Q3) > 0. Slmllarly, becauseof the
property of duality, LoLa(Pss) = Q4Q5(Q0)Q4Q5(Q2). Since Qo, Q2
are on the different sides of line Q4Q5, Q1Q5(Qo) and Q4@Q5(Q2) have
one positive and one negative number. Then LoLa(Pg3) = QuQ5(Q0)Q41Q5(Q2) <
0. As a result, we can always find and r € (0,1) such that ¢ (Pss) =
(1 =7r)0L1L3(Py5) + rdpLoLa(Pys) = 0, which means that ¢; pass the
dual of line Q4Q5. So ¢1 tangent to five sides 6f Q1Q2Q3Q41Q5.

Since ¢ and ¢ are both tangent to the pentagon P, we know that

Vip(Pr2) o< Vi1 (Pr2); Vp(Pas) oc Vo (Pas);
Vo(Pors) o< Vi1 (Po1s)aVe(Posza) o< Vi (Posa)

As ¢ is a curve of fourth powery, o1 is proportional to ¢ with these
constraints. Therefore, ¢ has a“quadratic branch that is tangent to

the pentagon Q1Q2Q3@Q4Qs.

2.4.1 An Example of Pentagon Case

Consider the'pentagon Q1Q2Q3Q4Q5, where Q1 =[0:2:1],Q2 =
[1:0:14Q3\=[0:—-2:1],Qs=[-1:—-1:1],Q5 =[-1:1:1]. Then

o =mi(a+7)(=28+7)(—a=B+y)(—a+B+7)
+m2(28+7)(=28+7)(—a—B+y)(—a+B+7)
+mz(28+y)(a+y)(—a—B+y)(—a+B+7)
+ma(28 +7)(a+7)(=28+7)(—a+B+7)
+ms(28 +7)(a+7)(=28+7)(~a—B+7)

Extend Q1Q5,Q3Q4 and meet at Qo, so Qo = [—2:0: 1].

From the quadrilateral case, we can know ¢ is inscribed in Qo@Q1Q2Qs3.
In this case, § = %,d) = % So 1 = l—leLg + 5Lola = 1;(25 +
(=28 +7) + 5(—2a + ¥)(a + 7). Now, I just need to prove that
1 pass the dual of Q4Q5, which is P,5. Because the expression for

Q4Q5 is a +v = 0, then Py5 = [1 : 0 : 1]. Therefore ¢1(Py5) =

17



Figure 8: Pentagon Case

LE(1)(1) 4+ 5(=1)(2) = 555 = 3r. As a result, r = 2 satisfy the
requirement that 1 pass Piys:

1
01 = ?(—20[2 —86% —ay +39%)

Denote (&, ¢, h)ds a point on ¢1. Because p1 = Vipq, then (z,y, h) =
Vi (a, f4q). As’a result, we can get

__ 4.1
TR
16
y——76
1 6

Solve these equations for a, 3, v:

400 9% 16,
3397 T 19" 19
400, %
3437 = 7 197
@ — E _i_%h
3437 T 7 19" " 19

18



Figure 9: The Examplevof Pentagon Case

Since we just consider the ratio ; we can simplify the equations into

o =— 96z — 16h

B =— 25y

v = — 16x + 64h
Therefore,

200
¢ = _7(963:2 + 25y* + 32zh — 64h%)

De-homogenizing the formula, we can get

200
Qo1 = —7(96x2 + 252 + 322 — 64)

It is the inscribed ellipse we want. (Figure 9)

2.4.2 Some Other Things to Discuss

Actually, we can deduce quadrilateral case based on triangle case
using the similar method that we use when deducing pentagon case.
However, in this case we will have a completely different form of ¢, and

19
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Figure 10: Explanation of The Deduction Quadrilateral Case

we can not continue thé deduction to pentagon. This is a left question
to answer.

The deduction fromitriangle to quadrilateral is produced as follow.
Let @ denote the, quadrilateral with vertices @1, @2, @3, Q4. (Shown
in Figure 10) Using the Linfield’s function, we can get a formula for ¢

@ =myLoL3Ly+moLiLaLy+maLliLoLy+ myLiLyLg

We can extend QQ1Q4 and Q2Q3 to meet at Q.

From the triangular case, there is a two-parameter family of in-
scribed ellipse 1 = 77 LoLa + LoL1 + 1;5L1L2. I will prove that we
can choose proper s to make p; pass the dual of @3Q4, which is Psy.

Since @1, Q2 are on the same side of Q3Q)4 and are on the different

side with Qo, we can get Q3Q4(Q1)Q3Q4(Q2) > 0, Q3Q4(Q0)Q3Q4(Q1) <
0,and Q3Q4(Q0)Q3Q4(Q2) < 0, which means L1L2(P34) > 0, LoLl(P34) <
0, and LoLy(P34) < 0. Because 0 < 7,8 < 1, then we can get all pos-
itive real number by choosing proper r and s for —, 1;5. There-

fore, for every r, we can always find a corresponding s such that
" LoLy + LoLy + 2L Ly =0

1-r
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According to the formula of the tangent point, we can know that
Vp(Pr2) o< Vi1 (Pr2), Vo(Pa3) o< Vi (Pas), Vi1 (Pra) oc Vi (Pra)

Because ¢ is a cubic curve, ¢ is proportional to ¢
Therefore, there is a one-parameter ellipse that tangent to the four
sides of @ from the interior.
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