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Abstract

It is known that the divisibility of numbers in Pascal’s simplices possesses fractal properties. In
this paper, we consider the graphs A;(m,n) generated by Pascal’s t-simplex.modulo m. We prove
that these graphs generalize the Sierpiniski graphs introduced by Klavzar andsMilutinovié. We study
their properties such as diameter and Hamiltonicity, and apply our result,to solve an open problem
proposed by Teguia and Godbole. We also give lower and upper bounds of the optimal pebbling
number mop¢ of triangular grid graphs.

Keywords: Pascal’s triangle; Pascal’s simplex; triangular grid;Sierpinski gasket graph; Hamiltonicity;
optimal pebbling number.
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1 Introduction

Pascal’s triangle, also known as the arithmetic triangle, is one of the most well-known mathematical
objects. A triangular array of binomial coefficients, it is a favorite with mathematical expositors [2] [17],
and has many real-world applications. For example, it has been used to model the Tower of Hanoi game
[9], design a cryptosystem [5], and solve PDEs [16]. It has even proved to be useful in physics [1] [10].

One of the most striking properties of Pascal’s triangle is that the odd numbers in it form a pattern
similar to the Sierpinski gasket, a fractal object obtained from an equilateral triangle by removing smaller
triangles from it recursively.

A

AA AAAA AAAAAA:AA

Figure 1: Pascal’s triangle moduloy2 approximates the Sierpinski gasket.

Other patterns arise when the module m,is-not 2. When m is a prime, the pattern is similar to the
case where m = 2. When m is a primewpower, the pattern becomes more complicated. And when m has
multiple different prime divisors, the pattern is more complicated still, as it is the union of the patterns
generated by the prime powers that,divide m. These patterns were considered by Holter et al. [10], who
called them the Pascal-Sierpiniski/gaskets.

Figure 2: Numbers not divisible by m in Pascal’s triangle!, m = 2, 3, 4, 6.

T have made an interactive applet available at https://www.findegil.xyz/applets/pascal that shows these patterns.



It is natural to consider the generalizations of the arithmetic triangle into the ¢-dimensional Euclidean
space. For example, the 3-dimensional generalization is called Pascal’s pyramid [19], in which trinomial
coefficients are placed on a tetrahedral lattice.

Figure 3: Pascal’s pyramid.

In geometry, the t-dimensional generalization of the triangle is called the ¢-simpléx. )For example, a
2-simplex is a triangle, and a 3-simplex is a tetrahedron. Similarly, the ¢-dimensional generalization of
Pascal’s triangle is called Pascal’s simplex [22]. It is rather unsurprising that the numbers not divisible
by m in Pascal’s simplex also yield fractal-like patterns [18].

In this paper, we consider the graphs A;(m,n) generated by Pascal’s t-simplex modulo m. The
vertices of A;(m,n) are the multinomial coefficients in the first # + 1%eomponents (when t = 2, a
component is a row) of Pascal’s t-simplex that are not divisible by m,/and edges are drawn between
geometrically adjacent vertices. For prime p and positive integer k, At’; denotes A;(p,p* —1). In
Sections 2 to 4, we present a rigorous definition of the graphs A;(m,n), and discuss some of their
properties, such as symmetry, self-similarity and the numbet of their vertices and edges.

Hinz [9] considered the graphs A2’5 , and proved that\it is isomorphic to T H,,, the Tower of Hanoi
graph with n pegs. The vertices of T H,, are the legal states of the discs in the Tower of Hanoi, with
two vertices adjacent if one can be obtained from ‘another with a legal move. Klavzar and Milutinovié¢
[14] proposed the Sierpinski graphs S¥, which were motivated by a topological construction called the
Lipscomb space [15], and proved that S§ is isomorphic to T Hj, (and therefore isomorphic to A2§). In
Section 5, we prove the more general statement.that the graph Até is isomorphic to the Sierpinski graph
SF.,. In Sections 6 and 7, we investigate the“diameters and Hamiltonicity of A;(m,n). Teguia and
Godbole [20] studied the Sierpiriski gasket graphs S, (not to be confused with the Sierpinski graphs
Sk), which are generated by the itérative process shown in Figure 1 that defines the Sierpiniski gasket.
They also proposed some open problems. One such problem concerns the properties of a generalization
of the Sierpiriski gasket graph generated by the numbers not divisible by p in Pascal’s triangle, where
p is a prime other than 2. InySection 8, we make use of our previous results to answer this problem.
Another of their openquestions asks about the pebbling number of S,,. We have not been able to solve
this problem, but wethave made some progress. In Section 9, we give lower and upper bounds of the
optimal pebbling number m,p (the definition of which will be presented in the section) of triangular
grid graphs.»In the appendix, we present an algorithm to find Hamiltonian cycles of graphs At’; .

2 _Definitions and basic properties

In Pascal’s simplex, the multinomial coeflicients are placed on a simplex grid. Therefore, it is convenient
to first introduce the simplex grid graphs, a natural generalization of the triangular grid graphs [21],
and then define the graphs A:(m,n) as their induced subgraphs.

Definition 2.1. The t-simplex grid graph is denoted by G¢(n). We assume that ¢ > 2 and n > 1 unless
otherwise stated. Its vertices are ordered (¢ + 1)-tuples of nonnegative integers (xg,z1,...,2:) that sum



to n, and two vertices (zg, 21,...,z¢) and (yo,y1,...,y:) are adjacent if % ZE:O |z — yi] = 1.

Figure 4: Simplex grid graphs G5(5) and G3(6).

Remark. Note that Z::o |z — yi| = foo (zi —y;) =0 (mod 2), so 3 ZZ:O |m;"= y;| is always a non-

negative integer, and therefore 1 is its least possible nonzero value.

Proposition 2.1. The condition %ZE:O |x; — yi| = 1 holds if and-only™if there exist integers a,b €
{0,1,...,t}, a # b such that ¢ = yo + 1, yp = xp + 1, and x. ="y, forc € {0,1,...,t} — {a,b}.

Proof. First observe that for a € {0,1,...,¢},

[Ta = Yol = 5 (|2 = Yal + |(n — 2a) TS Ya))

N = DN

|xa - ya‘ + Z Ti — Z Yi

i€{0,1,...,t} —{a} i€{0,1,....t} —{a}
1 t
< 5;\%‘—%1:1-

Therefore, there exist integers a,b € {0,1,...,t}, a # b such that |z, — ya| = |2 — ys| = 1, and z. = y.
for c € {0,1,...,t} —{a,b}. Now'ebserve that (x, — ya) + (xp — yp) = ZE:O (x; —y;))=n—m=0, so
either x, =y, + 1, yp = xp + 1oty = yp + 1, yo = x4 + 1. Either way, the proposition holds. O

Recall the definition of the’sign function that sgn(z) = 0 when z = 0 and sgn(x) = 1 when « > 0. In
the following proposition, we represent the degree of a vertex in G¢(n) using the sign function. Note
that such a representation may seem complicated but will make it easier for us to find the number of
edges in G¢(n) in the proof of Proposition 4.1.

Proposition.2.2. The degree of vertex (xg,1,...,x¢) in Gi(n) is

t
deg((zo,z1,...,2¢)) =1 Z sgn(z;).
i=0

Proof. The neighbors of (xg,x1,...,x;) are the ordered tuples (yo,y1,.-.,y:) of integers satisfying two
conditions: 1) y; is nonnegative for 0 < ¢ < t and 2) there exists a,b € {0,1,...,t}, a # b such that
To =Ya+ 1, yp =2+ 1, and z. =y, for ¢ € {0,1,...,t} — {a,b}. Now for every a,b € {0,1,...,t},
a # b, there is exactly one such tuple if x, > 0 and there is none if 2, = 0. Therefore, for every 0 < i <t
satisfying x; > 0, there are ¢ such tuples. O



Now we can see that in G¢(n), the vertices with the least degree are the ones containing the most
zeroes. Geometrically, they are the corners of a simplex.

Definition 2.2. The corners of G¢(n) are ¢y = (n,0,...,0),¢1 = (0,n,...,0),...,¢: = (0,0,...,n).
Now we present a rigorous definition of the graphs A;(m,n).

Definition 2.3. The graph A;(m,n) with integer m > 2 is the subgraph of G;(n) induced by the set 6f

every vertex (o, %1, ..., ) satisfying m (1772 A corner of Gy(n) is also a corner of Ay (m, ).

Proposition 2.3. Every corner of Gi(n) is in Ai(m,n).

Proof. If (xg,z1,...,2¢) = cg, then (11+3’2+"'+“) = O — 1. If (zo,x1,...,2) = ¢; where 2 >\1, then

T1,X2,..., Tt N CDE
(et = #,')1_1 = 1. Either way, it is not divisible by m. O

Figure 2 suggests that the pattern is the most regular when m is prime and x ‘is.one less than a
power of m. In this paper, we will mainly focus on this type of graphs.

Definition 2.4. For prime p and positive integer k, At’; denotes A (p,p® —(1).

Figure 5: Graphs Ayy and A33.

Proposition*2.4. The graph Atzl, is isomorphic to G¢(p — 1).

Proof. ‘Foryany vertex (xg,Z1,...,2¢) in G¢(p— 1), 1 + z2 + ... + 2 < p — 1, so the factor p will not

. oty
appear in the numerator of (mlz"'l'“f;:ft) = W

the subgraph of G¢(p — 1) induced by its own vertex set, so it is isomorphic to G¢(p — 1). O

.. 1 1 .
, so the vertex is in Ay),. Therefore, A4, is

Definition 2.5. We omit ¢ when it is equal to 2. Therefore, G(n), A(m,n), and A’; denote Ga(n),
As(m,n), and Ag’; respectively.



3 Symmetry and self-similarity

Since the inclusion of vertices in A;(m,n) depends on the divisibility of a multinomial coefficient by a
prime number, it is useful to introduce a relevant result by Dickson [6].

s
Z0,T15-3Tt

and only if s; = Y'_, iy for 0 <j <r, wheres=37"_, s;p, xp = > =0 zip and 0 < sj,x;; < p—al
for0<ji<r, 0<i<t.

Theorem 3.1. For nonnegative integers ro+x1+...+x: = s, ( ) is not divisible by prime p if

Applying Theorem 3.1 to At];, we obtain the following proposition.

Proposition 3.2. Vertex (zo,x1,...,2:) of Gi(pF — 1) is in At]; if and only if ZE:O x;; =p.— 1 for

0<j<k-—1, wherexi:Z;:éx,;jpj, and 0 <z;; <p—1for0<j<k—-1,0<i<t.

Proof. Notice that (, ubfi;l o) = (Pigl) (et ter). According to Theorem 3.4, .4 (p’;gl). There-

fore, vertex (zg,z1,...,7;) of G¢(p* — 1) is in At]; if and only if p{ ( Pl t). O

T0,L1,T2,..., T

We can see from Figure 5 that the visual representations of Atl; are highly symmetric. The following
proposition shows this fact by naming all the automorphisms of At’;, which are isomorphisms from

At]; to itself. (We refrain from applying the word “symmetric”,to the graphs At’; , S0 as not to cause
confusion with the type of graphs called symmetric graphs.)

Proposition 3.3. By changing the order of xg,x1,...,x:, we ean obtain (t + 1)! automorphisms of At];.
No other automorphisms exists.

Proof. Let a permutation of {0,1,...,t} be a. Thereware (¢ + 1)! such permutations, each of which
corresponds to an isomorphism

f((.’ll‘o,.’L’l, ce - ,.’L‘t)) S (ma(O)axa(l)a s axa(t)) .

Now since the corners are the vertices with'the’least possible degree, an isomorphism must map every
corner to a corner. Therefore, the number of isomorphisms is no more than the number of permutations
of corners, which is (¢ + 1)!. This eempletes the proof. O

The following corollary i§ us¢ful when we prove the Hamiltonicity of At]; in Section 7.

Corollary. For any two pairs of corners (¢;,c;) and (¢;r,c¢jr) such that i # j and i’ # j', there is an
1somorphism that maps c; to ¢ and c; to cj.

Self-similarity is what defines a fractal. The Sierpinski triangle is a fractal because it can be divided
into three smaller triangles, each of which is similar to the original one. The drawings of A% approximate
the Sierpirigkistriangle, and the (t-dimensional) geometrical representations of the graphs At’; also show
similarstructures. Therefore, it is reasonable to suggest that, although a finite, discrete object cannot
be partitioned into parts that are identical to itself, At’; can still possess some form of self-similarity. In

the following definition, we propose a partition of the vertex set of At’; such that every part of such

a partition induces a subgraph that is isomorphic to At];*l. Such a partition can prove useful when
investigating other problems, as we will show in Sections 4, 6 and 7.

Definition 3.1. For nonnegative integers z( + 2} + ... + 2y =p — 1, a block By 41 4 of P = Atllf is

the subgraph of P induced by the set of every vertex (zg, 1, ..., 2:) such that L);ZLJ =za for0<i<t.



Proposition 3.4. FEvery vertez in At]; 1s in exactly one block, and every block of At]; is isomorphic to
Akt
P

Proof. According to Proposition 3.2, vertex (zo,1,...,7:) of G¢(p* — 1) is in At’; if and only if

22:0 L%J =p—1and (zo mod p*~1, z; mod p*¥~1,... x; mod p*~1) is in Atg_l.

By uniqueness of the division algorithm, no vertex in At’; can be in two different blocks. And the

first condition implies that every vertex (zq,z1,...,2;) in A, is in block B| ., o o |-
r ka*1J7ka*1J’ ’\‘pkflj

By the second condition, the vertex set of By o1, o1 is {(2op" ™" + 7o, 21p" ™! + 71, o ThEIND Y
re)|(ro,m1,...,1¢) € At;}. Also notice that (zpp*~! +ro,zip* L +r1,...,2ip" " + 1) and (Bpp* ! +
so, TypF 1 +s1, ..., 2ipF "1+ 5) are adjacent if and only if (rg,71,...,7¢) and (sg, 51, . ., Sphare adjacent.
Therefore, Bwé,z§,~~7w2 is isomorphic to At;. O

Definition 3.2. For G = At];, two different blocks By and By are b-adjacent when'there exists edge
uv € G such that v € By and v € Bs. Such an edge is called a bridge between By ‘and Bs.

Proposition 3.5. Two different blocks By o1z, and By, v . are b-adjacent)if and only if 3 22:0 |
—yi| = 1. There is exactly one bridge between two such blocks, and itscendpoints are corners of each
block.

Proof. First, suppose that there exist adjacent vertices (zo, 1, ..., #4) € By o 2 and (yo,y1,-- -, Yt) €
By yi ...y, Therefore, there exists integers a,b € {0,1,...,t}, a #b'such that z, =y, + 1, yp = xp + 1,

,,,,,,
] - 5] =

and z. = y. for ¢ € {0,1,...,t} — {a,b}. Therefore, 1 S0 ol —y!| = 1 370
+ @re ‘different blocks, they can only be b-adjacent.

,,,,, t 05Y1 s mYs
Second, suppose that By ar....a; and By

0., wgrare b-adjacent blocks in At];. Therefore there
exists integers a,b € {0,1,...,t}, a # b such that'z, = y, + 1, y; = =z, + 1, and =, = y. for
c € {0,1,...,t} — {a,b}. Therefore, for vertices-(vo,>1,...,2:) € By ot .. 2 and (Yo,Y1,---,y) €
Bys i Ta > Ya, Yo > T Suppose they _.are adjacent. Then z, = y, + 1, y» = xp + 1. Now
(yo+1)p" ="+ (a, mod 1) = yip* ) Fy; mod pt=1)+1, s0 f, mod p* =t =0,y mod pFTt = ptt—1.
Similarly y; mod p*~! = 0, x} mod p¥~ V"= pk~! — 1. By Proposition 3.2, > ;_, (2} mod p*~1) =
ZE:O (y, mod p*=1) = pF=t — 1. Se . = alp* 1 for 0 < ¢ < t, c # b, 1, = zjp"~t +p*~1 — 1, and
Ye = ylpF 1 for 0 < c <t, ¢ # apyp= y.p" 1 +p*~1 — 1. And it is easy to see that (zg,x1,...,x;) and
(Yo, Y1, ---,y:) are indeed adjacent. Thus there is exactly one bridge between By ar..ay and By o /
and its endpoints are cornerstof each block.

Definition 3.3. Lét,the block-graph of G = At’; be the graph G’ whose vertices are the blocks of G,
and two vertices are adjacent if they are b-adjacent.

Proposition 3.6. For G = At’;, G’ is isomorphic to Gi(p — 1), and thus to Atll,.

Proof. By, Propositions 2.4 and 3.5, f(Bu 4/,...e;) = (20, 21,...,7;) is an isomorphism from G’ to
Appys O
4~ Number of vertices and edges

Proposition 4.1. The graph G¢(n) has ("jt) vertices and @(""_I_l) edges.



Proof. The number of vertices of G¢(n) is equal to the number of ways to distribute n identical objects
into ¢t + 1 distinguishable containers, which is well understood to be ("jt)

By Proposition 2.2, deg((xg, x1,...,x¢)) = tZﬁ:o sgn(z;). Therefore,

BGE) =5 Y <tzsgn>

(z0,21,...,2¢) EGe(n)

= t(t;— D) Z sgn(xo)

(20,21,...,2¢)EGt(n)

_tt+ 1) <n—|—t—1>

2 t

The last step of the equation above derives from the fact that the number of vertices (xo, z1, ..., x¢)
in G¢(n) where z( is nonzero is equal to the number of ways to distribute n — 1 identical objects (the
missing one is reserved for x() into t 4+ 1 distinguishable containers. O

(1) (PTE2) (e k_q
Proposition 4.2. The graph At has (eri*l)k vertices and ( )(2((p+2(1()_;) ) ) edges.
t

Proof. By Proposition 4.1, the proposition is true for k& = 1, ASbume that it is true for some k.
Then by Propositions 3.4, 3.6 and 4.1, |V (A4; k+1 )| = (Pt 1) | = ("~ 1)k+1 and |E(A t’;+1)| =

t=1 t+1) t—2 t(t+1)(1"H 2 ( Pt 1 k+1
(P+t_ )|E( )‘ + (p+ ) = G 1) . ‘By induction, this proposition holds for

every positive integer k. O

5 Graphs At’g and the Sierpinski graphs

The Sierpinski graphs, introduced by Klavzarjand Milutinovié¢ in [14], were motivated by a topological
construction called the Lipscomb spacé[15)s, It-has been proven in [14] that the Sierpiriski graph S¥ is
isomorphic to the Tower of Hanoi graph 7H,,, and is therefore isomorphic to A%. In this section, we
generalize this result to prove the following theorem.

Theorem 5.1. The graph At]; 1$asomorphic to the Sierpinski graph Stk’_H.

Proof. By Proposition 3.2, vertex (zo,x1,...,2¢) of G¢(2¥ — 1) is in At§ if and only if Zf oTij =1
forOSjSk—l,Wherexi:Z? 11:”2 and 0 <z;; <1V0<j<k—1,0<i<t Therefore, let
f((xo,z1,...,2¢)) = (84,52,...,5k), such that z,,, ; =1V 1<d <k, and f is a bijection between
V(A,%5) and V(SF " 1). Now we prove that f is adjacency-preserving.

By Proposition 2.1, two vertices © = (xg,21,...,2¢) and y = (yo,¥y1,--.,Ys) of Atl; are adjacent
if and only if there exist integers a,b € {0,1,...,t}, a # b such that z, = yo + 1, y» = ap + 1, and
r, = yafor c € {0,1,...,t} — {a,b}. Now z, > 0, so let § be the least integer such that 2° { z,, and
let s = (S7,82,...,8:) = f(z) and ¢t = (t1,¢a,...,tx) = f(y). Then s5 = a, ts # a, and sq # a, t4 = a
V. 1< d < §—1. Now for any c € {0,1,...,t} — {a,b}, . = y¢, so for any 1 < d < k, s4 = ¢ if and
only“if t; = ¢. Therefore, ts =b and sy =bfor 1 <d <J—1, so s and ¢ are adjacent in St-',—l Finally,
atcording to [13], |E(SY, )| = 0 and [E(SFH| = (t + 1)[E(SF,,)| + (*5'), and by Proposition 4.2,

|E(AH)| = %, so SF,; and |E(A;5)| have the same number of edges, and our proof is

complete. O



6 Diameter

Chen et al. [3] proved that diam(S}) = 2™ — 1. In this section, we will extend this result by proving that
diam(A(m,n)) =nif n = rp* —1 (1 <r < p—1) where prime p divides m, and that diam(At’;) =pF—1.
The former contains the result in [3] while the latter contains the k = 3 case.
Lemma 6.1. In the graph Gi(n), d(z,y) = %EE:O |x; — yi|, where © = (xg,x1,...,2¢) and y =
(yOa Yt - -- 7yt)'
Proof. By definition, if % 22:0 |z; — y;| = 1, then d(x,y) = 1. Assume that if % Zfzo |x; — y;| = kg then
d(xz,y) = k. Then if% ZZ:O |z; — y;| = k+1, then there exists a,b € {0,1,...,t}, a # b, such thatez, > y,,
xp < yp. Consider z = (20, 21,...,2¢) where z, =z, — 1, 2y = 2p+ 1, 2. = z. for ¢ € {0, 1,.. ., tF {a, b}.
First observe that %Zf:o |zi —yi| = %Z::O |z — yil + %(|za —Yal = |Ta — yal| + 126 — o] 185 — ws|) =
%ZE:O @i — yil + 3((2a — Ta) — (2 — 23)) = (k + 1) — 1 = k. By the induction hypothesis d(z,y) = k.
Therefore, d(z,y) < d(z,z) + d(z,y) =k + 1.
Then let d = d(z,y) and let a shortest path between z and y be z°, 2! m. % where 2° = =,
2t =y, and 27 = (x),27,...,27) for 0 < j < d. Then d(z,y) = d = Zj;é (%Zt 0 wl —al ™ )
t—1 ~d—1 | j +1 t—1 t—1
%Zi:o Zj:o |z} — ngr | > %Zi:o |20 — af| = %Zi:o [z —yil =k + 1

Therefore, d(x,y) = k + 1, and by induction the proof is complete. O
Lemma 6.2. The diameter of G¢(n) is n.

Proof. By Lemma 6.1, for any two vertices z,y € G¢(n),

lez yz|< Z(xz+yz):n

=0
Also, the distance between two different corners is,at least n. Therefore, diam(G¢(n)) = n. O
Theorem 6.3. The diameter of At’; is.pih—T1

Proof. When k = 1, the theorem is true by Lemma 6.2. Assume that it is true for some k. Now we
consider the case of G = A,F*!.

Let x € By and y € By, beytwo vertices. Let P = By, By, ..., B; where By = B, and B; = By
be a shortest path in G’ between B, and B,,. By Lemma 6.2 and Proposition 3.6, [ < p — 1. Let
VU1, V23, .. .,V _2Vg—1 be the bridges between consecutive blocks in P, such that ve; € B; and
V941 € Big1 for 0 <4 <[ — 1. Now observe that

d(z,y) < d(z,v9) + d(vo,v1) + d(v1,ve) + d(va,v3) + ... + d(va—2,v-1) + d(var—1, y)
= d(z,vo) + d(v1,v2 ) o d(va-,y) +1
1+ )dlam(At )+

<p(" -1 +p-1
pk+1—1

IA

Finally, by Lemma, 6.2, dlam(AtkH) pF*t1 — 1. This completes the proof. O

Now when t = 2, At’; = A’; is planar, and we can exploit its planarity to prove a more general result.
We start with a lemma.



Lemma 6.4. Of vertices (xo,x1, 22 — 1), (xo,21 — 1,22), (xg — 1,21,22) in G(n), if one of them is in
A(m,n), then at least one of the other two is in A(m,n).

Proof. Consider (zg, 1 —1,x2) and (zg, 1,22 —1). Since ((11;11_)1”2) + (”1+Sf2_1)) = (“:1”), if neither
of them is in A(m,n), then (zo — 1,21, x2) is not in A(m,n). If exactly one of them is in A(m,n), then
(xg — 1,21, 29) is in A(m,n). If both of them are in A(m,n), then the lemma holds regardless of whether

(xg — 1,21, 22) is in A(m,n) or not. |
Theorem 6.5. The diameter of G = A(m,n) is equal to n if (0,n,0),(0,n—1,1),..., (0,0,n) € G,

Proof. By Lemma 6.2, diam(A(m,n)) > n, so we only need to prove that d((xo,z1,22), (Yo, Y1, y2))' <N
for every (zo,1,22), (Y0,y1,y2) € G. Notice that when zy = 0 or x5 = 0, (zo,z1,22) &.&, "and

(0,7,0),(0,n —1,1),..., (0,0,n) € G, so every vertex containing 0 is in G.
Let Py, be a maximal path (29,29, 29), (2, z},23), ..., (2}, 2}, 2}) constructed with\thefollowing
rules:

1) (338, '73(1)7 xg) = (‘TO’ L1, x2);

2) aptt =ah +1for 0<i<l—1.

By Lemma 6.4, 2) can be achieved when both (z} + 1,2% — 1,2%) and (x} #=13a?; x5 — 1) are in G(n).
If exactly one of them is in G(n), it means that exactly one of % or z% is 0., Therefore the one candidate
that is in G(n) also contains 0, and is therefore in G. Therefore, the process stops only when neither
candidate is in G(n), so (z}, 2}, 2}) = co.

Similarly, we construct paths P;, and P»,, which end in ¢; /and ca-tespectively. And similarly, we
start from (yo, y1,y2) to construct paths Py, P1, and Ps,.

Since every vertex (z, x4, x4) in Py, satisfies 2} = x4 i, andvevery vertex (), 27, 23) in Py, satisfies
xé < xg, Py, and P;, do not intersect except at the commen=starting vertex. Similarly, no two of Py,
Py, and P, intersect except at the common starting yertex. Therefore, these three paths partition G
into three non-overlapping regions, such that every vertéx in G is either in one of these regions or on
one of these paths.

The length of any of these paths is less than or equal to n, so if (yo,y1,y2) is on one of these
paths then the theorem holds. If not, then WEOG let (yo,¥1,y2) be in the region confined by Py,
and P,,. Then Py, intersects with onefof R ,{and P, (or with both, if it passes through (zo,z1,2)).

WLOG let Py, intersect with Pp,.” Leét the first vertex in Py, that is also in Py, be (y%,y{,y%) =

(.’Elo,le,ifé) Since (x%)axllaxé) = (Z/é»y{,y%) S Ga d(($0»$1,$2)7(y0>y17y2)) S d((.’Eo,xhéEQ),(CEé,(Eli,

5)) + d((Yo, y1. ¥3)s (Yo, y1. ) )i J Sy +ityo+j=af +y =af +af <af+aitab=n O
The process elaborated=in the proof of Theorem 6.5 is illustrated by Figure 6. The two arbitrarily
chosen vertices and the paths they generate are highlighted with red (dashed) and blue (dotted)
respectively. Overlapping.edges are drawn in purple (dash-dotted). The desired path is marked by the
thick edges.
Given m, the following proposition can be used to find infinitely many values of n for which
diam(A(myn)) =n.

Proposition6.6. For prime plm andn =rp* —1 (1 <r <p—1), diam(A(m,n)) = n.

Proof\ By-'Theorem 3.1, for 0 < x < rp* — 1, we have p { (Tpl;_l), so m ¢ (Tp‘;_l). Therefore, we have

(0,7,0)4(0,n — 1,1),...,(0,0,n) € G, and by Theorem 6.5, diam(A(m,n)) = n. O
However, the analogue of Theorem 6.5 for t > 3 does not hold. Indeed, we make the following

conjecture.

Conjecture. For anyt > 3 and composite m, there exists positive integer N such that the diameter of
Ai(m,n) is greater than n ¥V n > N.
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Figure 6: Illustration for proof of Theorem 6.5. The graph used here is A(6, 26).

7 Hamiltonicity

In [20], Teguia and Godbole provedithat the Sierpinski gasket graphs are Hamiltonian, and proposed as
an open problem the Hamiltonigity/of the generalized Sierpinski gasket graphs generated by Pascal’s
triangle modulo a prime greater than 2. In this section, we will prove the existence of Hamiltonian paths
and cycles that satisfy a certain property in Ay ];, and in the next section, we will apply our result to prove
that these generalized Sierpinski gasket graphs are indeed Hamiltonian. By the isomorphism between
Atg and Sfﬂ, ourresult in this section also partly contains the result by Klavzar and Milutinovié [14]
that the Sierpinski graphs S} are Hamiltonian.

Definition 7.1. For tuple of nonnegative integers ' = (x(, 2, ...,2}), F(2') is defined to be the set
{(zg — 1,2, . Sxh), (xg, 2y — 1, .. 2)), ... (ah, 2, ..., 2, — 1)}
A set S is called a funnel if there exists some 2’ = (z{,, 2}, ..., 2;) where ¢ > 2 such that S = F(z2').
For some funnel S = F((x{,x},...,x})), the element (zg,z1,...,2¢) € S where z, = 2/, — 1 and

a4 =2V i€ {0,1,...,t} — {a} is denoted as S,.
A set of blocks in some G = At’; is a block-funnel if it is mapped to a funnel by an isomorphism

from G’ to Atil).

We will consider the intersections between funnels and the vertex sets of the graphs G¢(n) and At];.
Therefore, it is useful to note the following lemmas.
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Lemma 7.1. If x and y are two adjacent vertices of Gi(n), then there is exactly one funnel containing
both x and y.

Proof. Let x = (x9,21,...,2¢) and y = (yo,y1,---,Y). Assume that z, = y, + 1, yp» = xp + 1, and
. =1y forc e {0,1,...,t}—{a,b}. Therefore, the funnel S = F((x{,x},...,x})) where 2, = z, = y,+1,
zy=ypy =xp+1, and 2, =z, = y. for c € {0,1,...,t} — {a, b} contains both = and y, since = S} and
Y=,

Now suppose for contradiction that funnel T' = F((y(, v, - - -, y;)) also includes both = and y, and that
T # S. Assume that = Ty and y = T,/ Since T # S, we have @’ # a. Therefore, yo,+1 = 2, < ¥/, ZYa,
which is a contradiction. This completes the proof. 0

Lemma 7.2. For the corner ¢; of G¢(n), any funnel that contains it must contain at most one other
vertex of Gi¢(n).

Proof. Assume that funnel S = F(z') contains ¢;. First observe that the number of €lements of S that
are also vertices in G¢(n) is equal to the number of positive integers in 2/, which(is at most one more

than that of ¢;, which has only one positive integer. Therefore, |S N G¢(n)| < 2! O
Lemma 7.3. If x = (zo,21,-.-,2¢), ¥ = (Yo, Y1,---,yt) and z = (29, 21, - 5, 2) are different elements
of S = F((z(,x},...,2;)) and c is an integer such that . = y., thepz. < x: = ye..

Proof. Suppose for contradiction that z. > x.. Since z!, > z.,Awe have z/, > z, and z/, > y., which
means that © = y = S., which is a contradiction. O

The funnel is thus named because when ¢ = 2, it (or ratherjthe subgraph of G¢(n) it induces) looks
like a funnel. But note that by the automorphic properties of G;(n) and At’;, the “bottom” of a funnel
(that is, Sp) does not distinguish itself from the other eleménts of the funnel.

Definition 7.2. A path or cycle in G¢(n) or At]; (or_in the block-graph G’) is funnel-free if it does not
contain two different unordered pairs of consecutive vertices such that their union is the subset of a
funnel (or block-funnel). (The two pairs need not’be disjoint - for example, (u,v) and (v, w) also count.)

Note that a funnel is mapped toda new funnel when the numbers in every one of its elements are
permuted in a certain way. A subset of‘a funnel is mapped to the subset of a new funnel when a certain
index with the same value in every ‘one of its elements is deleted.

Example 7.1. Let S = F((xo, @1, x2,x3)), then {(x9,xo,z1,23 — 1), (x2 — 1,20, 21, 23), (T2, T, 21 —
1,23), (z2, zo—1,21,23)} 1s afunnel. Also, {(xo, z1, 2, x3—1), (X0, 1, 22—1,23), (x0—1, 21,22, 25)} C S
can be mapped to {(xg, x2, x5 — 1), (9,22 — 1,23), (x0 — 1,22, 23)}, which is also the subset of a funnel
(though not a properisubset).

Lemma 7.4. In the graph G¢(n), there exist funnel-free Hamiltonian paths between c¢; and c; for
0<i<yj<t.

Proof. (When t = 1, the graph is itself a path, so its only Hamiltonian path is funnel-free. When n = 0,
thegraph has a Hamiltonian path with a length of 0, which is funnel-free. (These degenerate cases are
diseussed here only to simplify the base case proof.)

Therefore, the lemma holds when ¢ +n = 1. Suppose that it holds when ¢t +n = s. Then we consider
the case when t +n = s+ 1. If t =1 or n = 0, then the lemma holds. Therefore, assume that ¢ > 1 and
n > 0.

Let G; and G5 be subgraphs of G¢(n) induced respectively by the set of all vertices (g, x1, ..., )
where z¢ > 0 and the set of all vertices (yo,y1,.-.,¥:) where yo = 0. Isomorphisms between G; and
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Gi(n — 1) and between G5 and G;_1(n) are given by f((zo,21,...,2¢)) = (xo — 1,21,...,2) and
9((yo,y1,---,v¢)) = (y1,-..,y:). Notice that the intersection of a funnel with the vertex set of one of
the two lesser simplex grid graphs is mapped to the intersection of a funnel with the vertex set of the
corresponding subgraph by these isomorphisms.

Since the lemma holds when t +n = s, both G¢(n — 1) and G;_;(n) have funnel-free Hamiltonian
paths between any two corners. Let P; be a funnel-free Hamiltonian path of G between (n,0,...,0)
and (1,n —1,...,0) and let P, be a Hamiltonian path of Ga between (0,n,...,0) and (0,0,...,n). We
concatenate these two paths to get P, a Hamiltonian path of G¢(n).

Suppose for contradiction that P is not funnel-free. Then let (u1,ug) and (v, v2) be the two pairstof
consecutive vertices in P whose union is the subset of a funnel. By Lemma 7.2, no such pair contains
(0,m,...,0), so each is either a subset of V(G1) or a subset of V(G2). By our hypothesis, the.two pairs
cannot both be subsets of V(G1) or of V(G2). Therefore, one such pair is a subset of V{(Gy) and the
other one a subset of V(G3). However, according to Lemma 7.3, if two vertices in a funnel are in V(Ga),
then no other vertex in the funnel is in V' (G4), which is a contradiction. Therefore, P(is funnel-free, and
this completes the proof. O

The following proof is very similar to that of Lemma 7.4, and certain details\are not repeated here.
Lemma 7.5. In the graph Gi(n), there exists a funnel-free Hamiltonian~cyele.

Proof. As in the proof of Lemma 7.4, let G; and Ga be subgraphs of«G¢(n) induced respectively by the
set of all vertices (zg,21,...,2:) where 2o > 0 and the set of allvertices (yo,y1,...,y:) where yo = 0.
Let P; be a funnel-free Hamiltonian path of Gy between (1,n —A3%.%,0) and (1,0,...,n — 1) and let P,
be a Hamiltonian path of Gy between (0,n,...,0) and (0,0, =,n). We concatenate these two paths to
get a Hamiltonian cycle C' of G¢(n).

Suppose that C' is not funnel-free. A contradiction can be obtained with an argument similar to that
used in the proof of Lemma 7.4, completing this proof. O

Lemma 7.6. For G = At]; and funnel S, the elements of 8" =SNG where |S'| > 3 are either all in
the same block or are in |S’| different blocks. In\thé latter case, the set of the corresponding blocks is the
subset of a block-funnel in the block-graph,G*;

Proof. Let S = F((xf,2},...,2})). Assume that S, = (yo,y1,-..,y:) and Sy = (x9,21,...,2:) are in
S’ and are in different blocks. Since Syprand S, are adjacent, the blocks are b-adjacent, which means

that LD,?LJ +1= {pfilJ and LpgilJ = L)ZEIJ + 1. Therefore, 22:0 L,S%J = E::O L’%IJ +1l=p=
ZE:O p,f—él, so pF=1 | 2l Y.< i € t. Soif S,, and Sy are two elements of S’, then {i“,ﬁf,_llJ < {%J,
which means that S,, and Sy are in different blocks.

Now observe thet by an isomorphism from G’ to Atzl), the block that contains S, is mapped to an

element ofF((L)",fﬁlﬁlJ,{pf/ilJ,...,{p,félD). O]

Lemma 7.7.In Atzlf there exist funnel-free Hamiltonian paths between c; and c; for 0 <i < j <t.

Proof. (We, proceed with induction. By Lemma 7.4, this lemma holds when & = 1. Assume that it holds
for At’;. Let G = At§+17 and for every block there exists funnel-free Hamiltonian paths between ¢; and
¢ for 0< i < j <t. Let P’ be a funnel-free Hamiltonian path of the block-graph G’ between By, _1,....0
and Boo . ,—1. Let P be a Hamiltonian path of G between (p* —1,0,...,0) and (0,0,...,p* — 1),
obtained by concatenating funnel-free Hamiltonian paths of the blocks in the order of P’.

Suppose for contradiction that P is not funnel-free. Then let (u1,u2) and (v1,vs) be the two pairs of
consecutive vertices in P whose union is the subset of a funnel. The vertices cannot all be in the same
block, and by Lemma 7.6, P’ is not funnel-free, which is a contradiction. O]
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Theorem 7.8. There is a funnel-free Hamiltonian cycle in At];.

Proof. Let G = At’;, and let C’ be a funnel-free Hamiltonian cycle of the block-graph G'. Let C be a
Hamiltonian path of G obtained by concatenating funnel-free Hamiltonian paths of the blocks in the
order of C’.

Suppose that C' is not funnel-free. A contradiction can be obtained with an argument similar to that
used in the proof of Lemma 7.7, completing this proof. &l

Figure 7: Funnel-free Hamiltoriian cycles of A3 and As3.

8 A problem proposed by Teguia and Godbole

In this section, we apply results“werobtained to prove the Hamiltonicity of the generalization of the
Sierpinski gasket graphs propdsedsby Teguia and Godbole [20] by presenting a method to construct a
Hamiltonian cycle of a generalized Sierpinski gasket graph from one of A’;. The proof is illustrated by
Figure 8.

Definition 8.1. If = (29,21, 22) is a vertex of G(n), then #(x) is the induced subgraph of G(n + 1)
with vertices {(zg, 21,2 + 1), (zo, 21 + 1,22), (xg + 1,21, 22) }.

Definition 8.2. df G is an induced subgraph of G(n), then T'(G) denotes the graph U,egt(v).
Definition 8.3. The generalized Sierpiriski gasket graph SG’; denotes T’ (A’;,).
Now/SG% is isomorphic to Si1; in [20], and the desired generalization is SG’; where p > 3.

Lemima 8.1. Ifu, v and w are different vertices in G(n) and t(v), t(u) and t(w) have a common vertez,
then {u,v,w} is a funnel.

Proof. Let such a common vertex be (zg,z1,23). By definition, u,v,w € {(zg,21,22 — 1), (xo, 21 —
1,29), (xo — 1,21, 22))}. Since u, v, w are pairwise different, {u, v, w} = F((zq, x1,22)). O
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Theorem 8.2. S’G’; is Hamiltonian.

Proof. According to Theorem 7.8, there exists a funnel-free Hamiltonian cycle of A’;. Let such a cycle
be C = (v1,v2,...,v). Let vy denote v; and let vy denote vq. Let u; ; be the common vertex of t(v;)
and t(v;). By Lemma 8.1, for any 1 <4 <1, u;—1; and u; ;11 are different. So let w; denote the vertex
in t(v;) that is neither w;_1; nor w; ;41.

Then we apply the following procedure to find a Hamiltonian cycle of SG';. Let SC be the cycle

(1,25, w—1,1,u7,1). We go from w; to w;, and for each vertex w;, if it is not already in SC, we insert

it between u;—1,; and u; ;+1. When we finish this process, SC will have become a Hamiltonian cycle,of

SGk. O
P

,/A

\ A
/0N
'A'
I ' ‘\
X A’l'A A'A‘A‘

N YAND T S T T {

(a) Graph A3, with Hamiltonian cy- ( ) Graph SG3, with every t(v) (v €
cle highlighted. A3) filledywith gray.

(c) Graph SG3, with vertices in S€ (d) Graph SG3, with SC (1n1t1a1)( ) Graph SG3, with SC (final) high-
(initial) highlighted. highlighted. lighted. Newly added edges and ver-

tices are orange (the edges are also
dotted) while old ones remain blue.

Figure 8: Illustration of the process generating a Hamiltonian cycle of S G’;.

9 (' Optimal pebbling of the triangular grid

The_problem of graph pebbling was originally introduced to give a proof of a theorem in number theory
[4]: Its history is outlined in two survey papers, [11] and [12], by Hurlbert. In [20], Teguia and Godbole
asked about the pebbling number of S,,. They considered this problem to be “quite hard”. We have not
solved the problem, but we have made some progress. In this section, we give lower and upper bounds
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of the optimal pebbling number of the triangular grid graph. We begin by stating some important
definitions about graph pebbling.

A distribution D of pebbles on a connected simple graph G is a function D : V(G) - NU {0}. A
pebbling move from u to v removes two pebbles from u and add one pebble to v. A pebbling sequence is
a sequence of pebbling moves. If D(v) > 1, or if there exists a pebbling sequence that places a pebble on
v, then v is reachable from D. More generally, if D(v) > k, or if there exists a pebbling sequence that
places k pebbles on v, then v is k-reachable from D. If every vertex of G is reachable from D, then D 1s
solvable. The pebbling number w(G) of a graph is the least number & such that any distribution with &
pebbles is solvable. The optimal pebbling number mop;(G) of a graph is the least number k suchthat
there exists a solvable distribution with k& pebbles.

We will use a result in [8] to get a lower bound of the optimal pebbling number of the triangular grid
graph. A few relevant definitions are helpful for the understanding of the method used.

The coverage of distribution D is the set of all vertices reachable from D. The size of a distribution
D, denoted by |D], is the total number of pebbles in D. The size of the coveragé of a distribution
D, denoted by Cov(D), is the total number of vertices reachable from D. Thé covering ratio of a

distribution D is given by CO‘%(‘D). Reach(D,v) is the greatest integer k such that v)is k-reachable under

D. The exzcess of v under D is denoted by Exc(D,v), and is given by max(Reach(D,v) — 1,0). The
total excess of D is denoted by TE(D), and is given by >, .y (c) Exc(D;v)r A unit is a distribution
in which only one vertex contains pebbles. The unit excess of D is.denéted by UE(D), and is given
by Zul D(u)>0 TE(P,), where P, denotes a unit containing exactly D(w) pebbles, all placed on u. The

effect of a pebble placed at v is denoted by ef(v), and is given by ZuEV(G) 9—d(v,u),

Observe that if G is a spanning subgraph of G, then w5 (G) > mopt (G'). More generally, if V(G')
can be partitioned into n parts such that the subgraph induced by each part contains G as its spanning
subgraph, then 7o, (G) > 7"%@/) Therefore, we intraduce the following graph.

Definition 9.1. The toroidal triangular grid graph is denoted by T'G(m,n). Its vertices are ordered
pairs of integers (g, z1) such that 0 < zg < m—1, 0 < z; < n—1. Two vertices (g, x1) and (yo, y1) are
adjacent if there exist integers —1 < dy, d; <. such that xg — yo = dp (mod m), 1 —y1 = d; (mod n),
and |d0| + |d1| + |d0 + d1| = 2.

Figure 9: Toroidal triangular grid graph T'G(9,8) and a spanning subgraph of it.

An example of a toroidal triangular grid graph is given by Figure 9. The vertex set of TG(n+2,n+1)
can be partitioned into two parts each of which induces G(n), so a lower bound on the optimal pebbling
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number of toroidal triangular grid graphs naturally leads to one of triangular grid graphs. Since TG(m, n)
is vertex- tranbitive we can apply a theorem in [8] to get a lower bound of its optimal pebbling number,
namely - 107 mn. We conjecture the lower bound to be 1 smn, which is 2.14 times the proven bound. For
Comparlson Gydri et al. [8] applied the same theorem on the square grid P,,00P, to get a lower bound
13mn but conjectured a lower bound of 2 2mn [7], which is 13/7 ~ 1.857 times the proven bound. (Our
bound is a strict inequality, and it is unclear why Gyori et al. did not claim to prove a strict inequality
when they actually did.)

Theorem 9.1. For m,n > 5, the optimal pebbling number of TG(m,n) is greater than 107mn

Proof. As in [8], we make some claims regarding the coverage, excess and effect of units. We tansee
that when m,n > 5, for every unit U on TG(m,n),

1 Ul =1 0 Ul =1
Cov(U) < { 3|U|  2<|U] <3, and TE(U) = ¢ 5|U| 2<|U| <3
20 Ul =4 2l U =4

and that for every vertex v € TG(m,n), ef(v) < 13. Therefore, let P be an”optimal distribution on
TG(m,n), and decompose P into disjoint unit distributions Uy, Us, . .., Uy..Let S1 be the total number of
pebbles that are placed on units with size 1, and define S; 3 and S>4-Similarly. Then applying Corollary
5.2 of [8], we get

A=LV(TG(m,n))| + UE(P) — x5 Y 57°Cov(U;)

P|> &=
Pz ef(v)
- %mn + %52,3 + 2524 — i(%SQ,g -+ %524 + (‘P‘ — 5'273 — 524))
13
_ Zmn— §S55+ 12554 — 5| P
- 13
_ G 4P 4P
- 13
and therefore |P| > {-mn. O

Corollary. The optimal pebbling number of G(n) is greater than W.

Now we introduce a pebbling pattern that allows the covering ratio to be arbitrarily close to 5,
which is about 83.3% the maximum degree. For comparison, we have mentioned that Gydri et al. [7]
conjectured the covefing ratio for the square grid to be at most 3.5, which is 87.5% the maximum degree.

/ \

VAVAVAVAVAVAVAVAVAVAVAVAY
VAVAV""""""‘VAVAV
VAYAYS YT T AVAVAY

VA"\.O.C.0.0.0.0.0‘VAV
VAVAVAVAVAVAVAVAVAVAVAVAY
VAVAVAVAV"AVAVAV‘VAVAV

\ /

Figure 10: Elongating this structure increases its covering ratio.

Using a variant of this pattern, we obtain an upper bound for the optimal pebbling number of G(n).
The following lemmas that lead to the bound are illustrated by Figures 12 to 14.
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Figure 11: The above structure can be repeated to pebble infinitely large grids.

Lemma 9.2. For 0 <n <6, Tops(G(n)) < max(n + 1,2n — 2).
Lemma 9.3. For 7 <n < 14, mop(G(n)) < 3n—9.
Lemma 9.4. Forn > 15, Topt(G(n)) < 3n — 9+ mope (G(n — 15)).

A'o‘l'o'o'o"o"o'o‘l‘wa
A'A‘-‘-‘n‘-‘-‘-‘n‘-‘-""
PAVAVAVAVAVAVAVAVAVAVAVAVAV "

PAVAYAVAVAVAY)"

Figure 13: Proof of Lemma 9.3. The graphs in the figure are G(7) and G(14).
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Figure 14: Proof of Lemma 9.4. The graph in the figure is G(20)./A pact of this configuration is an
optimal pebbling configuration of G(5) that has been used in Figure 12,

Theorem 9.5. The optimal pebbling number of G(n) is at maost's d(15d+2r+9)+max(r+1,2r—2,3r—9),
wheren = 15d+1r, 0 <r < 14.

Proof. By Lemma 9.2 and Lemma 9.3, for 0 < "< M /7m,,,(G(n)) < max(n +1,2n —2,3n — 9), so
this theorem is true for d = 0. Assume that it is true for some d. Then for any n = 15(d + 1) + r,
Topt (G(n)) < 3n—94Topt (G(n—15)) < 3(15(d#1)+7) — 9+ 3d(15d+2r+9)+max(r+1,2r—2,3r—9) =
3(d+1)(15(d + 1) + 2r + 9) + max(r + 1, 2p< 2:3r — 9), and the proof is complete. O

We conjecture that this bound iscasymptotically optimal. Indeed, we believe that a covering ratio
equal to or greater than 5 is not achievable even on a toroidal triangular grid graph.

Conjecture. For any positive_iftegéer m and n, the optimal pebbling number of TG(m,n) is greater

than %mn
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Appendix. Algorithm that finds Hamiltonian cycles of A,

from numpy import array, concatenate, append, roll, where, argsort, arange
from math import comb

from numpy.linalg import norm

import matplotlib.pyplot as plt

from matplotlib.colors import LinearSegmentedColormap

def simplex_grid_path(t, n):

PR}

Input: t, n

Output: A numpy array describing a Hamiltonian path of
the simplex grid graph G_t(n) with end vertices c_0 and c_t.

Example:
>>> simplex_grid_path(2,2)
array([[2, 0, 0],

[1, 0, 11,

[1, 1, oI,

[0, 2, 0],

[o, 1, 11,

[0, 0, 211
if t==0:

return array([[n]])

return array([append([n-i], roll(v, n-i))
for i in range(n+1)
for v in simplex_grid_path(t-1, i)])

def Hamiltonian_cycle_of_A(t, p, k):

RN}

Input: t, p, k

Output: A numpy array describing a Hamiltonian cycle of
the graph {A_t}_p~k.

Example:
>>> Hamiltonian_cycle_of_A(2, 2, '2)
array([[2, 1, 0],

[3, o, 0],
[2, 0, 11,
[1, o, 21,
fo, o, 31,
[o, 1, 21,
o, 2, 11,
[o, 3, o1,
[1, 2;~011)

PR}

basie.pathe= simplex_grid_path(t, p-1)

def get_basic_path(start, end):
25
Returns a Hamiltonian path of G_t(p-1)
starting at c_{start} and ending in c_{end}.
1230
inverse_permutation = [start] + list(set(range(t+1)) - {start, end}) + [end]
permutation = argsort(inverse_permutation)
return basic_path[:, permutation]
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componentl = simplex_grid_path(t, p-2)

componenti[:, [0, 1]] = componenti[:, [1, 0]]

componentl += array([1]+[0]*t)

component2 = append(array([[0]]*comb(p+t-2, t-1)),
simplex_grid_path(t-1, p-1)[::-1],
axis=1)

cycle = concatenate((componentl, component2))

for i in range(2, k+1):
cycle = array([p * b + v
for a, b, ¢ in zip(roll(cycle, 1, axis=0),
cycle,
roll(cycle, -1, axis=0))
for v in get_basic_path(where((a-b)==1)[0][0],
where ((c-b)==1) [0] [0])])

return cycle

plt.rcParams["figure.figsize"] = (8,4*(3**0.5))
position_matrix = [None,None,[[0,1,2],[0,3**0.5,0]11,[[0,1,1,4],[0,1,4,11,[054,1,11]1

def visualize_cycle(t, p, k):

RN}

Input: t, p, k

Output: Shows a figure showing a Hamiltonian cycle of {A_t}_p~ku
No value is returned.

When t=3, the interactive figure can be rotated and zoomed.

It should be noted that 3D figures produced by matplotdib
are subject to some glitches. For example, it is very often
that an edge that should be under another edge is above it.
However, matplotlib does have the virtue of being
comparatively fast and interactive.
290
if t==2:

fig, ax = plt.subplots()
elif t==3:

fig = plt.figure(1)

fig.add_subplot (111, jprojection=’3d’)

ax = plt.axes(projection=23d’)
else:

raise ValueError(’Bad dimension %s.’ % t)

cycle = Hamiltonianicycle_of _A(t, p, k)
coord = array([sum((v*position_matrix[t]).transpose()).transpose() for v in cyclel)
length = len(cycle)

for i in range(length):
for j in range(i):
if norm(cyclel[i]-cycle[j], 1)!=2:
continue
ax.plot(*array([coord[i], coord[j]l]).transpose(),
c="red’ if ((i-j-1)%length)*((j-i-1)%length)==0 else ’#e0e0e0’)
ax.scatter(xcoord.transpose(), c=arange(length), cmap="hsv", zorder=1000)

plt.axis(’off’)
plt.show()
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