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Investigation on i-commuting probabilities on finite groups
On Ki Luo

Abstract

There is a well-known theorem in group theory called the 5/8 theorem. It states that if the
probability of two randomly chosen elements in a finite group that commute exceeds 5/8, then the group
is abelian. The commuting probability is widely investigated by mathematicians throughout the
years. In this project, we generalize the commuting probabilities to the i-commuting probabilitiesjyon

finite groups, which consider the orders of the commutators.

The i-commuting probability p;(G) is defined as the probability of two randomly chosén elements
x,y in a finite group G such that the order of their commutator is 4, i.e. ord([x,y]) =i. With this defini-
tion, we proceed to compute the i-commuting probabilities of dihedral groups, dicyclic groups and
meta-cyclic groups. We soon discover that they are of similar structures and hence the same method
can be applied to compute their i-commuting probabilities. We transfer )calculating the i-commuting
probabilities of meta-cyclic groups into a number-theoretic problem_and provide general formulae of

some special cases of meta-cyclic groups.

We notice that some of the i-commuting probabilities of‘dihedral groups and dicyclic groups are the
same. This inspires us to investigate on the abstract.relation between groups with the same i-commuting
probability for all 4+ € N. In fact, this relation is called isoclinism, which is an equivalence relation.
We first propose that p;(G) = p;(H) for all ¢.& Nyif two groups G and H are isoclinic, and successfully
prove this conjecture. Moreover, we deyvelop some useful tools concerning isoclinism to help us with the

computation of other groups.

Before the final computation o6f ;~eommuting probabilities of groups of small orders, we further inves-
tigate some unknown groups: Although we cannot find the general formulae of symmetric groups and
alternating groups, we have obtained the lower bounds of p;(S,,) for particular i’s. The necessary and
sufficient condition foryp; (S,,) > 0 and p;(A4,) > 0 is also found. Moreover, we deduce the general formula
of generalized dihedral groups. At last, we provide a number of examples of i-commuting probabili-

ties of groups of orders less than 30, for instance, SmallGroup(16,13), Cg x C3, S3x Cs, and (C3 x C3) x Cs.

Keywords: group theory, commuting probability, commutator subgroup, isoclinism, dihedral group,

digyclic group, meta-cyclic group, generalized dihedral group, symmetric group, alternating group
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1 Introduction

This project is inspired by a result in group theory called the 5/8 theorem [I], which concerns the
probability when a randomly chosen pair of elements in G commutes. The commuting probability is
defined below:

Definition 1.1 (commuting probability)
Let G be a finite group. Define the commuting probability p(G) to be the probability that two

randomly chosen elements commute, i.e.

1

= @#{(x,y) €G? | zy = yx}.

p(G)

Notice that G is abelian if and only if p(G) = 1.

The 5/8 theorem concerns the upper bound of the commuting probabilitieswof finite non-abelian

groups, it states that:

Theorem 1.2 (The 5/8 theorem [1]])
Let G be a finite non-abelian group. Then p(G) < 5/8.

1.1 Definition of i~-commuting probability,

Recall that for g € G, the order of g, denoted by ord(y), is defined to be the smallest positive integer
k such that g* = e. And for z,y € G, the commutator of z and y is defined as [z,y] = zyz 'y~ L.

1

In Definition one may notice that #y = yx is equivalent to zyz~ly~! = e, i.e. ord([z,y]) = 1.

With this idea, we generalize this notion by considering the orders of the commutators.

Definition 1.3 (i-commuting probability)
Let G be a finite group and ¢ € N. Define the i-commuting probability p;(G) to be the probability

that the order of two randomly chosen elements is 7, i.e.

pi(G) = @#{u,y) & G? | ord([z,3]) = i}.

Notice thatyp; (G) = p(G) is the classical commuting probability as in Definition

In this paper, we aim to find the i-commuting probabilities of finite groups. The following lemma is

another useful yet trivial characterization of the i-commuting probability:

Lemma 1.4
Let G be a finite group. Define the commutator map f : G x G — G given by (z,y) — [z,y], and

G;={g9g € G|ord(g) =i} CG. Then

1

= WU_l(Gi”'

pi(G)

Proof. This follows from the definition of preimage, i.e. f~%(G;) = {(z,y) € G* | f(x,y) € G;}. O
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Here we provide two trivial facts concerning the i-commuting probability. The first one helps us to

compute p;(G) for a certain ¢ when given other i-commuting probabilities of G.

Proposition 1.5
Let G be a finite group. For any i € N, p;(G) > 0 only if 7 divides |G]|.

Proof. If p;(G) > 0, then there exist an element [z,y] € G such that ord([z,y]) = ¢. This shows i | |G| by
Lagrange’s theorem [2]: for any g € G, ¢/¢! = ¢, where e denotes the identity of the group G. O

Proposition 1.6
For any finite group G,

> pi(G)=1.

€N

Notice that it is a finite sum.

Proof. Notice that {G;};en partition G. Hence

e = r e,

ieN

where it is a disjoint union. This gives

GP =11 OL= W (G-

ieN
The first equality comes from the fact that f is surjective. O
In this project, we will first compute the’i-commuting probabilities of some elementary finite groups,
namely dihedral groups, dicyclic groups and meta-cyclic groups. We then try to find the abstract relation

between groups with the same/#&commuting probability for all i € N. At last, a list of all i-commuting

probabilities of groups of‘orders less than 30 is computed using the methods we developed.

1.2 Review on'group theory

We first previde some elementary properties of commutator and commutator subgroup before our

investigation [2].

Proposition 1.7 (Properties of commutator)

Let G, H be groups and z,y € G. We have:

L [z,9] = [y, 2] "

2. If ¢ : G — H is a group homomorphism, then

In particular, we have g[z,y]lg~! = [gzg~*, gyg~!], for any g € G.
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Proof. 1. This follows from the fact that [z,y][y, 2] = (zyz~ 'y~ ") (yzy~'z~1) = e and [y, 2|[z,y] =

(yay e ) (zya~ty™l) =e.

2. Since ¢ is a group homomorphism, we have

The particular case follows from setting ¢ : G — G to be the group homomorphism, given /by

x> grg~ L. -~

Definition 1.8 (Commutator subgroup)
Let G be a group. Define G’ := ([z,y] | z,y € G) to be the commutator subgroup of G.

Proposition 1.9 (Properties of commutator subgroup)

Let G be a group and G’ be its commutator subgroup. Then:

1. G’ is a normal subgroup of G.
2. The quotient group G/G’ is abelian.

3. If N is a normal subgroup such that G/N is abelian, then N D G'.

4. If H is a subgroup of G such that H O G’, then H is a normal subgroup of G.

Proof. 1. For any g € G and h € G’, we have ghg~! = (ghg=*h~1)h € G'. Thus G' < G.

2. Let a,b € G. Since ab = ba(a b rab)y €baG’, abG’ C baG’. Then abG’ = baG’ follows from the

fact that cosets are either equal or disjoint.
3. For any a,b € G, abN = baN gives [a,b] = aba=*b~1 € N. The result follows.

4. Take g € G and-h € H, then ghg™* = (ghg~*h=1)h € H since ghg~'h=' € G’ C H. Thus H < G.
O

Definition 1.10 (Center and centralizer)
The center of G, denoted by Z(G), is defined as Z(G) :={z € G |Vg € G,9z = zg} < G.
For x € G, the centralizer of z is defined as Cg(z) :={g € G | gzg~! =2} < G.

Recall the inner automorphism group Inn(G) be the image of group homomorphism 6 : G — Aut(G)

via 0(g)(x) = gzg~!. Also by Exercise 3.3 in [2], G/Z(G) is cyclic implies G is abelian.
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Proposition 1.11 (Equality case for the 5/8 theorem)
Let G be a finite group. Then the following are equivalent:

1. p(G) =5/8.
2. |Inn(G)| = 4.

3. Inn(G) = Cy x Oy, where Cs is the cyclic group of order 2.

Proof. (1 = 2) As p(G) # 1, G is non-abelian. Hence by Theorem the equality holds if and enly
if |Z(G)|/|G| = 1/4. This implies |Inn(G)| = |G|/|Z(G)| = 4. (Notice that Inn(G) = G/Z(G)\by first
isomorphism theorem.)

(2 = 3) It remains to show Inn(G) 2 Z/4Z. However, it is trivial that Inn(G) is got cyclic.

(3=1) |Inn(G)| = 4 gives G # Z(G), which implies G is not abelian, so p(G), <5/8.

Now we have |Z(G)|/|G| = 1/4. Let g € G\Z(G), notice Z(G) is a proper subgroup of C(g), so it must
have index 2 since Z(G) has index 4 (by Lagrange’s Theorem). Thus {C(g)|/|G| = 1/2 as required. O

As an example, Qg, the quaternion group attains the equality.
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2 -commuting probabilities of meta-cyclic groups

In this section, we compute the i-commuting probabilities of different classes of groups, namely the
dihedral groups, dicyclic groups and meta-cyclic groups. We will soon discover that they are of similar

structures. First, we start with dihedral groups.

2.1 Dihedral group

Recall the definition of dihedral group,

Definition 2.1 (Dihedral Group)
Let n € N. Define the dihedral group D, as

Dy, = {(p,o|pt=c*=e,0pct =p ) ={p0? |0<i<n—-1,0<j<1}.

This group has 2n elements. Notice (p) (denoted by P) is a subgroup of Dy, and the two right cosets
P, Po partition Ds,.
Then we give all possibilities of what form a commutator can take using the identity op*o~1 = p~*.

We notice that the commutators in Dy, fall into one of the four.categories.

(A) [p% p°] = e since they commute.

(B) [p% pP0] = p*pPap=ta="p~" = p**.

(©) [p%a,p’] = [p%,p"] " = p~*".

(D) [p%a,pa] = ptopPootp o Lp Vs PP

Here, 0 < a,b<n-—1.

The next two propositiens give the information of commutator subgroups and the centers of dihedral

groups. The proofs are simple in light of the form of these commutators.

Proposition 2.2 (Commutator subgroup of dihedral group)

The commutator subgroup of Dy, is the cyclic group generated by p?.

Progf. From the computations above, every element in H = (p?) is a commutator, i.e. (p?) C D}, . Now

fiotiee (p?) < Ds,, and consider the quotient group
Dsy/(p*) = {H,Hp, Ho, Hpo},

which is abelian. By Proposition 3), we have H D D),. Hence by Proposition ), we have
Dy, = (p). m
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Proposition 2.3 (Center of dihedral group)

Z(Dy,) = {e},

Let n € N and n > 3. The center of the dihedral group Ds,, is

{e,p"/?}, if n is even.

2020 S.T. Yau High School Science Award (Asia)

Proof. One can check that it indeed lies in the center of Ds,. Let x € Z(Dg,). If 2 = p® for some

0 <a<mn-—1,then [p% po] = p?® gives n | 2a. Thus a = 0 or n/2. If x = p%c for some 0 < a < nf—"

note that [p%c, p] = p—2

Remark. When n < 2, then Ds, is abelian, i.e. Z(Day,) = Day,.

Now we proceed to the computation of i-commuting probabilities of dihedral groups.

Proposition 2.4
Let n,i € N. Define S to be the following set:

Then we have the following formula:

keS

where

, which is the identity only if n < 2. The proposition follows.

S:={0<k<n—1]ord(p*) =i}.

1
pi(Dan) = 7 > (14x] + Byl + Gkl + Dy,

(z,y)

(z,y) € P x Po | [z,y] = p*}
Cy = {(z,y) € Po x P | [z,y] = p*}

(z,y)

€ Po x Po | [z,y] = p*}.

O

Proof. Let G=="D3,. We shall show that f~'(G;) = f~1(S’), where S’ = {p* € Ds,, | ord(p*) =i,0 <

E<n-—}

(€) Take (v,y) € f~YG:), [r,y] € Gi. By Lemma 2.2 we have [z,y] = p* for some 0 < k <n — 1.

Hence [z,y] € S’ and (x,y) € f~1(S").
(D) follows directly from S’ C G;.

Hence by Lemma [I.4] we have

pi(Dan) = 75 3 #H(w.0) € G| f(w9) = )

keS

We partition G2 into four cases, namely P x P, P x Po, Po x P and Po x Po. The result follows.

O
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Proposition 2.5

Using the same notation as in Proposition [2.4] we have

n?, ifk=0.
|Ag| =

0, if k #£0.

n, if n is odd.

|By| = |Ck| = |Dy| = 2n, if n and k are both even.

0, if n is even and k is odd.

Proof. For |Ay/|, notice [x,y] = e for any (z,y) € P x P, thus |[A;| = n? if k = 0 and |A;|\& 0'if k £ 0.

For |Bg|, notice (p?,p°c) € P x Pa, [p% pba] = p?* = p* if and only if 2a= =k (mod n). The

possibilities of a depend on the parities of n and k:

Case 1: If n is odd, then a = 27'k (mod n). We only have one solution 6f a. In this case we have

By ={(p*, p’0c) € Px Po|0<b<n—1},ie. |Bi|=n.

Case 2: If n and k are both even, then ¢ = —k/2 (mod n/2). This gives two solutions, namely

(n—k)/2 and (2n — k)/2. Hence |Bi| = 2n.
Case 3: If n is even and k is odd, then 2a = k (modsm), has no solution, i.e. |By| = 0.
The exact same method can be applied to |Ck|"and |Dy|, and the result follows. O

Proposition 2.6
Using the same notation as in Proposition 2.4 If k € S, then

k=n/i-m,

for some m € N such that ged(m,n) = 1. We have |S| = ¢(i), where ¢ is the Euler totient function.

Consequentially, when both n and n/i are even, then k is even for any k£ € S. On the other hand,

when n is even and n/i is odd, then k is odd for any k € S.

Proof. As“P is cyclic, p* has order n/gcd(n, k). Hence for k € S, we have ged(n, k) = n/i. This gives

k.=n/i-m for some m € N such that ged(m,n) = 1. Consider the map

{0<m<i—1|ged(m,i) =1} > {0<k<n-—1]ged(n,k)=n/i}

men/i-m

This gives a bijection between the sets and thus |S| = ¢(i). The rest is clear since m is odd, or else

ged(m,n) # 1. O
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Theorem 2.7 (i-commuting probabilities of dihedral groups)
Let i € N. And g : N — R be the function given by

1/4, ifi=1.
0, if ¢ > 1.
Notice that g(i) will appear in this paper frequently.

Then we have

B0(i) +g(3), if nis odd.

pi(D2n) = 20(i) + g(i), if n and n/i are both even.
0, if n is even but n/i is odd.

If ¢ does not divide n, then p;(D2,) = 0.

Proof. Notice if i = 1, i.e. § = {0}. Then for any k € S, |Agx| = n?. If i >, then 0 ¢ S, then |A;| =0,
ie. |Ag| = 4n%g(i).
We first consider the case that n is odd. By Proposition we have |By| = |Cx| = |Dg| = n and so

by Proposition 2.5, we obtain

_ 1
T 4n?

1 ) S ) 3
Z |Ag|+|Br|+|Cr|+|Di| = I Z(4n29(z)+3n) = u(41129(1)—H’>7”L) =

i (i) ).
keS keS

4n

One can check that g(7)¢(i) = g(i) and the résult follows.

For n and n/i both even, by Proposition we have for any k € S, k is even. Thus by Proposition
2.6 |By| = |C| = |Dy| = 2n. By Proposition 2.4] we obtain

(Do) =4y S (ang(i) + 6m) = 2 (an2g(i) + 6m) = 220 4 iy,

2n
keS

For n is even and n/i is odd, by Proposition k is odd for any k € S. Then by Proposition
| By| = |Cx| = |*= 0. Also, notice i # 1 or else n and n /i will have same parity. Hence p;(Ds,) =0. O

Using Theorem [2.7] we can now compute the i-commuting probabilities of dihedral groups. The

following example verifies our formula.
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Example 2.8 (Dihedral group of order 8)
The following table shows the elements in Dg that commutes. Denote O is for the elements that

also commutes when n is odd and %t represent the additional elements that only commutes when n

is even.
e |p | pP || o |po|pPc| pio
e CHNCHNCENC] (CHINC)
p olo|lo |0
p? OO |® |0® | x| | Lt
P lo|lolo|o
o C] o3 C) Tt
po ® ted ® ted
plo || ® £es £es @
plo || ® £SS £SS ®

Notice all other commutator in unfilled cell is p?, which is of order 2.

Then we shall use the formula above to verify the i-commuting probability of Dg for all ¢ € N.

3p(1) 1 5

Dg) = =

p1(Ds) 2><4+4 3’
30(2) 3
D = = —
P(Ds) =357 =3

This result can also be applied to p;(Day ) ol larger n.

Example 2.9 (Dihedral group of order 48)

The following gives the i-commuting probabilities of Dyg for all ¢ € N using the formula above.

p1(Dag) = 232(21 t7= 1%’
p2(Dag) = 2&2(321 = %7
p3(Dag) = 23<f<(?2)21 = %7
pa(Dag) = ;i(gl = é
p6(Dag) = % = é

And p;(D4g) = 0 for all other 7 € N.

One may notice that Z pi(Dys) is indeed 1.
ieN
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2.2 Dicyclic group

We now turn the attention to dicyclic groups.
Definition 2.10 (Dicyclic group)

Let n € N. Define the dicyclic group @4, as

Qun = <a,x | 22" = 1,22 = a", 27 laz = a71> ={a'z? |0<i<2n—1,j=0,1}.

This group has order 4n. Notice {(a) (denoted by A) is a subgroup of Q4,. Hence the two right cogét 4
and Ax partition Q4.

Similarly, we compute commutators using the identity za*z~! = =" in dicyclic groups.before finding

the i-commuting probabilities, which again falls into one of the four categories:

(A) [a*,a™] = e since they commute.
(B) [a*,a™z] = a*amxa"kz"ta™™ = a2k,
(C) [a*z,a™] = a*za™z~ta " Fa=™ = a=2™.

(D) [a¥z,a™z] = afzamxx"ta F2"la™™ = aF(za™ P a0 o2F 2T,

This holds for 0 < k,m < 2n — 1.

Proposition 2.11 (Commutator subgroup of dicyclic group)

The commutator subgroup of Qg, is the cyclic group generated by a2.

Proof. By the above, every element inWH = <a2> is a commutator, i.e. <a2> C @), Now notice that

<a2> < Q4n, and consider the quetient group
Quan/ <a2> ={H,Ha,Hx, Hax},
which is abelian. By Proposition we have H 2 Q/,,. Hence we have Q,, = (a?). O

Proposition 2.12 (Center of dicyclic group)
Let n € N and n > 1. The center of Q4 is {e,a"}.

Proof. One can check they indeed lies in center of Q4,,. Let g € Z(Q4,). If g = a” for some 0 < k < 2n—1,
then [a* ar] = a®* gives n | k. Thus k = 0 or n. If g = a*z for some 0 < k < 2n — 1, note that

[a*2,a] = a2, which is the identity only if n = 1. The proposition follows. O

10
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Theorem 2.13 (i-commuting probabilities of dicyclic groups)
Let ¢ € N. We have

0 if 2n/i is odd
B0(i) + g(i) if 2n/i is even

where g(i) has the same definition as Theorem [2.7]

Proof. This is similar to the computation of dihedral groups, hence we skipped it.

2.3 Meta-cyclic group

Notice that the computations of i-commuting probabilities of dihedral groups and dicyclie.groups are

similar. This makes us wonder whether similar methods can be applied to a specificelass of groups.

fact, both dihedral groups and dicyclic groups are meta-cyclic groups, which is defined as follows:

Definition 2.14 (Meta-cyclic group [5])

A group M is said to be meta-cyclic if it can be written as the following form:
M= <a,b |a™ =1,b°=a', b ab = aT>,

where m, s,t,r € Z satisfy 7* = 1 (mod m) and m | t(r — 1). This group has order ms.

We developed several lemmas to find the i-commuting probabilities of meta-cyclic groups.

Lemma 2.15

Let M be a meta-cyclic group. For any n € N, k € Z, we have b~ "a*b" = a*"".

In

Proof. We prove by induction onan,'notice that b='a*b = (b= ab)(b'ab)--- (b~'ab)) = (a")*. Then for

k times
k € Z, we have (b~'aFby=ki= b~ a*b, which implies b=1a=*b = a(~F)".

For n € N, assumie that b~ "a*b" = a*". And

bfnflak:bnle _ b*l(bfnak:bn)b

n n+1
_ ak'r‘ ro_ akr )

Lemma 2.16
Let 0<a,y<m—1,0< 4,6 <s—1, we have

ms—B_ _ ms—3

[a®b?,a7b°] = a® "

11
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Proof. Consider

[a®b?,a7b°] = a“bPa b Pa= b %"

= a"‘(bﬁavbfﬁ)(béa*abf‘s)af“’
_ aOébﬂ*msa’ybfﬁersbéfmsafabms—éa—»y
ms—3 _ ms—3§

— aa+'yr ar -,

Theorem 2.17 (i-commuting probabilities of meta-cyclic groups)

Let S:={0 <k <m—1|ord(a¥) = i}. Then

1
M) = (s 3 (o 0) | @97~y =k (mod )

- (fz(gz #{(a, 8,7,6) | a+yr™F —ar™ ™0 —y =k (mod m)}

Proof. We shall show that f~1(M;) = f~1(S’), where M; = {g.€\M | ord(g) = i} and S’ = {a* € M |
ord(a*) =i,0 <k <ms—1}.

(C) Take (z,y) € f~1(M,),[z,y] € M;. By Theorem we have [z, y] = a” for some 0 < k < ms—1.
Hence [z,y] € 8" and (x,y) € f~1(9").

(D) The converse direction follows from S"DM;.

|S| = (i) as the commutator subgroupsis‘Cyclic. O

The calculation of i-commuting probabilities of meta-cyclic groups is transferred into a number theoretic
problem. We now provide two corollaries of special cases.

Corollary 2.18
Let M be a meta-cyclic group. If r = —1, then

20(i) + g(i), ifnis odd.
pi(M) = ¢ 53-0(i) + g(i), if n and n/i are both even.

2m

0, if n is even but n/i is odd.

Proof. First, by the condition r* = (—1)* =1 (mod m), s is even. Consider

N={a+~(-1)*"PF —a(=1)*"°%—y=k (mod2)}.

When (5,0) = (0,0) (mod 2), the equation becomes 0 = k (mod m), which has solution if and only
if K = 0. This gives |[N| = m? when i = 1.

12



Research Report 2020 S.T. Yau High School Science Award (Asia)

When (8,9) = (0,1) (mod 2), the equation becomes 2ae = k (mod m). Counsider the following cases:
Case 1: If m is odd, then a = 27!k (mod m). We only have one solution of a, i.e. |[N| =m.

Case 2: If m and k are both even, then a = —k/2 (mod n/2). This gives two solutions, namely

(m —k)/2 and (2m — k)/2. Hence |N| = 2m.
Case 3: If n is even and k is odd, then 2a = k (mod m) has no solution, i.e. |N| = 0.
The cases where (8,d) = (1,0) or (1,1) (mod 2) are similar as above.

On the other hand, |S| = (i) as commutators of M are in the form a* for some k € N. The result

follows. O

Corollary 2.19

Let M be a meta-cyclic group. If m is a prime, then

p(n) = =Em L
P (M) = %

And p;(M) = 0 for all other i € N.

Proof. Notice that a +yr™*=8 — ar™*=9% — 4 = 0 (modn),if and only if 3 = § = 0 when m is prime.
This yields s> — 1 cases to be considered, as 0 < 3,9 <%s<- 1. Since m is prime, there are m solutions to

(o, ) in every case. Also p(m) =m — 1 by the fact that m is prime.

Hence we have

pi(M) = @Efn:% ME
m(s?—1)(m—-1) (s2—=1)(m—1)

m M = =
pm (@) ms2 ms?

after simplifications! O

Here we provide a few examples of meta-cyclic groups to verify Theorem [2.17

Example 2.20 (Dihedral groups & dicyclic groups)
Notice that t = m,s = 2 and r = —1 in Dy, and 2t = m, s = 2 and r = —1 in Q4. It directly

follows from Corollary

One should notice that this gives us the same answer as in Theorem and

Now we shall try to apply Theorem to some meta-cyclic groups that are not dihedral or dicyclic.
The following two examples use Corollary 2.18 and [2.19] respectively.

13
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Example 2.21 (C; x Cy)
Notice that Cy x Cy = <:c, ylat =yt =eyry~l = z*1>. Then we can deduce the useful identity

yx® = 2~ %. Here we compute the commutators of Cy x Cy after some tedious work.

f .’an xay2 .’an_ 1
zb e z2e e z2®
J}by x—Qa x2b—2a x—Za x2b—2a
II?by2 e 1.20. e :17217
{Eby_l $_2b x2a—2b x—2b x—2a—2b

It remains to consider k € N such that k = 2a (mod 4). The result follows:

30 | o) ifin
pi(Cy x Cy) = 8
0 ifitn
where g(i) = 1/4 only if ¢ = 1. Thus

_3(,0(1) 1 5
TR TITS
_3p(2) 3
P78 Ty

On the other hand, m =t =s =4 and r = —1. By Corollary

_3p(1) 15
P1(04><104)—2X4+4—8,
3 3
p(CaxCa) =577 =53

Notice that these two methods gives us the same answer, thus verifies Theorem and Corollary
218

Example 2.22 (C5 x Cy)
Notice that Cs x Cy = <a,b | a® =b* = e, bab™! = a2>, i,e. m =5, =4 and r = 2. By Corollary

[2:19] we have

4245-1 1

p1(Cs % Ca) = 5x42 4
_@-1G-1) 3
p5(Cs x Cy) = x4 =71

14
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The following example does not fulfill the conditions in Corollary or thus we directly apply
Theorem 217

Example 2.23 (Cy x C3)

Notice that Cy x C3 = <a, bla® =b%=ebab~! = a4>, i.e. m =9, =3 and r = 4. Consider
N={a+7-48F _a.-4¥9% _r=%k (mod9)},

where 0 < a,v <8 and 0 < 3,6 < 2.

Notice that 4° =1 (mod 9), 4! =4 (mod 9) and 4% = 7 (mod 9).

116y 6(y—a) 32vy—aw)

2|3y 3(v—2a) 3(v-o)

Hence we have

3x9=27 if3|k

IN| =
0 if 31k
This gives
_2Tp(1)x8 1 11
Pi(CoxCa) == g Yo~ a7
27¢p(3) x 8 16
p3(Cg x C3) = 7§0( ) S ==

(3x9)2 27

1 1
One should notice that g(i) = 9 # 1 when ¢ = 1 in this case. It is because the two elements only

commute in one out the nine cases.

15
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3 Isoclinism

In this section, we try to build the abstract relation between groups of the same i-commuting proba-
bilities for all i € N. One may observe that D, and @4, share similar general formulae of i-commuting

probabilities. Indeed, they share a special relation named isoclinism, defined below:

Definition 3.1 (Isoclinism)
Let G; and G be finite groups. GG; and G5 are said to be isoclinic, denoted by G; ~ Gs, if there

exist isomorphisms

¢:G1/Z(G2) = Go/Z(G2), and
Y Gy — G

such that the following diagram commutes:

G1/Z(G1) x G1/Z(G1) 2225 G/ Z(Gs) x Ga/Z(G)

G u @

where p; : G;/Z(G;5) x G;/Z(G;) — G defined by (zZ(G;),yZ(G;)) = [z,y] for j =1,2.

Notice that isoclinism is an equivalence relation.

When two groups G and H are isoclinicyp; (&) = p1(H) [3]. We generalize this idea to i-commuting
probabilities for all ¢ € N.

Theorem 3.2
Let G, H be groups. If G and H are isoclinic, then p;(G) = p;(H) for all s € N.

Proof. Consider

G12(G) (@) = @mﬁpi(m
1

= WH(IJJ)
1

= WH(%?J)

={(a,) € (G/Z(G))* : ord(ps(a, b)) = i}|.

€ G x G :ord([z,y]) =i}

€G xG:ord([2Z(G),yZ(@)]) =i}

As 1) is an isomorphism, this equals to

[{(a,b) € (G/Z(G))* : ord(¥(p1(a,b))) = i}.

16
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From the commutative diagram,

ord(1(p1(a, b)) = ord(ps((a), $(3))) = .

Finally since ¢ is an isomorphism, this equals to
{(c.d) € (H/Z(H)?) : ovd(pa(c,d)) = i} |-

Thus we have

ZfG)Ppi(G) - |%|2pi<ﬂ>

pi(G) :pi(H)-

It is natural to propose the following question:
Question 3.3
Is the converse of Theorem [3.2] true?
We will answer this question after computing the i-commuting probabilities of more groups.
The below proposition states the isoclinism between dihedral groups and dicyclic groups.
Proposition 3.4

Let m > 2. The following are isoclinic,

1. The dicyclic group of order 4m, Q4.

2. The dihedral group of order 4m, Dy,,.

3. The dihedral group of order 2m, Ds,,, provided m being odd.

Proof. (1 ~ 2)-By Proposition [2.3] and we have Z(Dy,,) = {e, p™} and Z(Quam) = {e,a™}, which
are both isomorphic to Cy. One can check that ¢ : Dy /Z(Dam) = Qum/Z(Qam) via p— a and 0 — x
is indéed ‘an’isomorphism.

We have shown D), = C,, in Proposition and @), = C,p, in This gives D), = Q},,, with
1 defined as p — a.

Now it remains to show that the diagram commutes.

As ¢ is an isomorphism, [¢(z),d(y)] = é(z,y]). Take (pZ(Dam),0Z(Dam)) € Dam/Z(Dam X
Dym/Z (D). It is mapped by ¢ X ¢ to (aZ(Qum),2Z(Qam)) € Qum/Z(Qam) X Qum/Z(Qam), then
to [a, z] € QY by p2. On the other hand, it is mapped by p; to [p, o] € Dj,,, then to [a,z] € Q},,. The

result follows.

(2 ~ 3) Similar as above.

17
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As isoclinism is an equivalence relation, we have Q4. ~ Dyy, for all m € N and Q4. ~ D4y, ~ Doy

if m is odd. O

The following theorem provides us with a useful fact to compute the i-commuting probabilities of

unknown groups. It is stated in Exercise 2 in [4].

Proposition 3.5
Let G, A be finite groups. G is isoclinic to G x A if and only if A is abelian.

Question 3.6
Let G, H be finite groups. Is it true that p;(G) X p;(H) = p;(G x H), for all i € N?

Answer 3.7. When ¢ = 1, this is always true [3]. Otherwise, the claim is incorrect. As a counterexample,

consider Dg and Cy, p3(Dg) X p3(C2) = 1/2 x 0 = 0, which does not equal to p3(DgCs) = 1/2.

18
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4 i-commuting probabilities of groups of small orders

In the previous sections, we have developed methods to compute the i-commuting probabilities of

different classes of groups. In this section, we will investigate on other groups. Moreover, we will apply

these methods and compute the i-commuting probabilities of non-abelian groups (up to isomorphism) of

orders less than 30.

4.1 Generalized dihedral group

Definition 4.1 (Semi-direct product)

by the formula
(n,h) - (n1, h1) = (ng(h)(n1), hh1).

Definition 4.2 (Generalized dihedral group)

as inversion.

Notice that H is cyclic if and only if H x4 C5 is a dihedral group.

Here is the multiplication table of generalized dihedralygroup. Let g, h € H.

(9,0) - (7 0).= (g9(0)(h),0) = (gh,0)
(9,00 (1) = (99(0)(h), 1) = (gh, 1)
(41, (h,0) = (9¢(1)(h), 1) = (gh™1,1)
(9;1) - (h, 1) = (9¢(1)(h), 0) = (gh™",0)

Let N and H be groups, and suppose ¢ : H — Aut(N) is a homomorphism. The group G = N x4 H
is defined as the set of ordered pairs (n, h) with n € N,h € H, and the group operation being given

Let H be an abelian group. Let ¢ : Co — Aut(H) be defined by ¢(0) as the identity map and ¢(1)

Define the semi-direct product H x4 C2 be the generalized dihedral group, denoted by Dih(H).

Also (h,0)~! = (h7%0) and (h,1)~! = (h,1). We can now compute the commutators in Dih(H), which

fall into one of the four categories.
(A) [(¢50), (h,0)] = (0,0) since they commutes.
(B) [(97 0)7 (h” 1)] = (gh7 1)(9_1’ 0)(h_1’ 1) = (927 0)
(C) [(ga 1)7 (h’ O)] = (gh_la 1)(9_17 1)(h_170) = (h’_Q’ O)
(D) [(ga 1)7 (hv 1)] = (ghila 0)(9717 1)(h717 1) = (92h727 O)

where g, h € H.
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Theorem 4.3 (i-commuting probability of generalized dihedral group)

Let ¢ € N, we have
_ 3IS]

pi(Dih(H)) = |H] + g(7)

where S = {h € H | ord(h?) = i}.

Proof. Notice that all the commutators in Dih(H) are in the form of g?, where g € H. Hence it suffices
to find |S|. Using the similar method in calculating the i-commuting probabilities of dihedral groups, the

result follows. |

Example 4.4 (Dihedral group)
Note that when H is cyclic, H x C5 is a dihedral group discussed above. In fact, Do, is isomorphic
to Cy, x Cy. In this case, S = {h € C,, | ord(h?) = i}. One can check that |S| = ¢(i) when n is odd,

and |S| = 2¢(i) when n and n/i is even.

Example 4.5 (Dih(Z3 x Z5))
Let G = Dih(Z3 x Z2). By Theorem we have

pl(G):43>z<122+i:%
p2(G) = 43;122 - é
ps(G) = 43;142 - %
po(G) = 435142 - i'

And p;(G) = 0 for all other 7 € N.

4.2 Symmetric groups& Alternating groups

Definition 4.6 (Symmetric group)
The symmetric group on n letters is the set of bijections from {1,2,..,n} to {1,2,...,n}, with the

group operation being composition. It is denoted by S,,.

Definition 4.7 (Alternating group)

The subgroup of even permutations of the symmetric group S, is called the alternating group,

and is denoted by A,.
Here is a fact concerning the commutator subgroup that will help us compute the i-commuting
probabilities of S,, and A,,.

Proposition 4.8 (Commutator subgroup of S,, and A,,)

The commutator subgroup of S, is equal to A,,. For n > 5, the commutator subgroup of A,, is equal

to A,, itself.
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Proof. Since S, /A, is abelian, the commutator subgroup S, < A,,. Conversely, we have [(ab), (ac)] =

abc), showing that every 3-cycle is in S’ . As A, is generated by 3-cycles, so S! = A,, is as required.
n n

For the second statement, the result follows by the fact that A,, is simple. O

Corollary 4.9
For all i € N, p;(S,,) > 0 if and only if 2 € A,, such that ord(z) = 1.

Proof. Tt follows from Proposition and A, is generated by commutators in S,,. N

Notice that A,, is a simple group. Recall that a simple group is a group whose only normal subgreups
are the trivial group and the group itself. The following theorem provides us with more understanding

of its commutators.
Theorem 4.10 (Ore Conjecture (proved) [6])

Let A be a non-abelian simple group. For all g € A, g is a commutator.

This theorem gives us the inspiration of the condition of which p;(A,)"> 0

Proposition 4.11
For all i € N, p;(A,) > 0 if and only if there exist z € A,, such that ord(z) = i.

Proof. (<) By Theorem such x = [a, b] for some ayb"€ A;,. This gives p;(A4,,) > 0.
(=) The converse direction is trivial. O
Hence we obtain the necessary and sufficient, cenditions for p;(S,) > 0 and p;(4,) > 0. Then we try

to develop a bound to p;(S,) for some.particular i’s.

Proposition 4.12

For any symmetric group Sy, p3(Sy) >

— (n)?

Proof. Let (ab), (ac) be transpositions in S,. Notice that (ab)~! = (ab). Thus we have [(ab), (ac)] =
(ab)(ab)(ac)(ac) = (abe), which has order 3. The result follows. O

The following' example verifies this inequality.

Example 4.13 (p3(S,))

Consider §,, for 3 < n < 5. Their i-commuting probabilities are computed by computer program.

1.1 1
pg(Sg):iz(g!PxBxQxl*é
1.1 1
Si) == > Ax3x2= —
ps(Sa) =5 2 g x4 x3x2=o;
(S)—7> ! Xbhx4x3x2=
Pslos) = 90 = ()2 = 240

As the i-commuting probabilities of S, and A, are rather hard to compute, we used a program to

compute its commutators and calculate their orders. The code is attached in the appendix.
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4.3 List of i~-commuting probabilities of groups of orders less than 30

Now we aim to find the i-commuting probabilities of groups of orders less than 30. We first divide

the groups into different classes. The list of the groups is from [7].

Type 1: Dihedral groups, dicyclic groups & generalized dihedral groups

We can directly apply Theorem and

Type 2: Direct product of a group of Type 1, 3 or 4 and an abelian group

By Proposition pi(G) = p;(G x A) for all i € Nif A is abelian. As the groups of direct product of
orders less than 30 are all a known group with an abelian group, we can now easily find theit i-commuting

probabilities.
Type 3: Meta-cyclic groups

These can are computed by Theorem [2.17] as special cases. One should netice that the semi-direct
product of two cyclic groups is meta-cyclic. For r = —1, Corollary is used. For m is a prime,
Corollary is used. Otherwise, we will directly compute the i-commuting probabilities using the
similar method as Example 2.23]

Type 4: S, and A,

These are calculated by computer program attached in the appendix. Also notice that |S,| = n! and

|A,| = n!/2 so only S3, Sy4, Ay appeared in ourstable.
Type 5: Other groups

These groups are not in any classes as above. However, most of them have special structures that

make the computations less tedioris.

e SmallGroup(16,3): It has the presentation G := <a, bc|a*=0b%*=c?=e,ab=ba,bc = cb,cac™! = ab>.
By [9], its commutator subgroup is isomorphic to Co. Hence p1(G)+p2(G) = 1. On the other hand,
the centersof SmallGroup(16,3) is the Klein four group. By Proposition 3)7 p1(G) = 5/8, thus
p2(Gh=3/8.

¢ SmallGroup(16,13): It is defined by the central product of Dg and Cy, which has the presentation
G = <a7m,y |a* = 2% =e,a® = y*,vax~ ' = a1 ay = ya, vy = yx> [10). The elements are in the
form a®2?y” where 0 < o < 3, 0 < 8, < 1. The computations of commutators are shown in the

following table:
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azy

2m

amx a72k a2m72k: a72k a2m72k

amxy a—2k a2m—2k —2k

Notice that all commutators are in the form of a™, for some 0 < m < 3. Therefore, |S| :=#{k €

N | ord(a¥) = i} = ¢(i). It remains to solve 2a = k (mod 4) for 0 < a < 3, which ha8*0,2,0,2
solutions for k = 1,2, 3, 4 respectively. This gives

5

87

12 x 2 x 4op(i)
P1(G)—1—62+
12 X 2 X 4p(2
pz(G):l—GQW()

ool Lo I+

However, there are three groups that we failed to compute their 7=commuting probabilities, namely

SL(2,3), C3 x Dg and C3 x C3. SL(2,3) has the presentation <a, bicla® =03 =c? = abc> [11], which we

cannot think of a method to find its ¢-commuting probability. On the other hand, unfortunately, the

presentations of C5 x Dg and C3 x C3 cannot be found so'we have to give them up reluctantly.
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After computing the i-commuting probabilities of groups of orders less than 30, we gain a deeper

understanding of the i-commuting probabilities. The following answer regards to Question |3.3

Answer 4.14. No. Counsider the counterexample A4 and (C5 x C3) x Cy, we have p1(Ag) = p1((Cs x
C3)xC3) =1/3 and pa(Ay) = p2((C3 x C3) x Cy) = 2/3. However, notice that the commutator subgroup
of Ay is V4, which has order 4. While the commutator subgroup of (C3 x C3) x Cs is generated by

[((0,1),0)((0, 1), 1)] = ((0,2), 1)
[((0,1),0)((0,2),0)] = ((0,2),0)
[((1,0),0)((0, 1), )] = ((2,0), 1)
[((1,0),0)((0,2),0)] = ((2,0),0)
[((1,1),0)((0, 1), )] = ((2,2),0),

which has order > 5. Hence there does not exist an isomorphism between thiese’two commutator sub-

groups, thus disprove the question.

By [8], there are totally 3 Hall-Senior families in groups of order 16, i.e. the number of equivalence
classes up to isoclinism is 3. One should notice that one of the=classes consists only of abelian groups.

From our computation, we verify that there two classes of groups that has equal p;(G), namely

e p1(G) =5/8 and p2(G) = 3/8: SmallGroup(16,3), C4 x Cy, Q@D1g, Dg x Ca2, Qg x Co and Small-
Group(16,13), and

e p1(G) =7/16, p2(G) = 3/16 and ps(G] 5 3/8: D1 and Q6.

This ends our results. However, wei¢annot solve the cases of symmetric groups and alternating groups.
This hinders us to calculate the i-commuting probabilities of all groups. We may also try develop some

stronger bounds of the i-commuting probabilities of S,, and A,,.

5 Conclusion

We found the general formulae for finding i-commuting probabilities of dihedral groups, dicyclic
groups, meta-cyclic groups, and generalized dihedral groups. We have transferred the calculation of i-
commuting-probabilities of meta-cyclic groups into a number-theoretic problem and provided the general

formulae of some special cases.

We also investigated on the abstract relation between groups with the same i-commuting probability
for all i € N, called isoclinism. Moreover, we developed some useful tools concerning isoclinism to help

us with the computation of other groups.

Although we cannot find the general formulae of symmetric groups and alternating groups, we have

found the lower bound of p3(S,,) and the necessary and sufficient condition for p;(S,) > 0 and p;(4,) > 0.

At last, we use these methods to compute the i-commuting probabilities of all of the groups of orders

less than 30, though with three exceptions.
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Appendix

This is the program for computing i-commuting probabilities of symmetric groups and alternating

groups. It is written in C++ language.

#include<cstdio>
#include<algorithm>
Finclude<cstring>
using namespace std;
int i,j,k,1,m,n;
int a[362882],b[362882],c[362882],d[362882],ans[362882];
struct p{
int x,y;
} inv[362882];
bool bo(p const&r,p const&s){
return r.y<s.y;
}
int ged(int a, int b) {
if (b==0) return a;
return ged(b,a%b);
}
int lem(int a,int b){
return axb/gcd(a,b);
}
void go(){
int e[362882];
bool f[362882]={0};
for (int i=0;i<n;i++) e[i]=a[b[e[d[i ]I
int now=1;
for (int i=0;i<n;it+){
int ct=0;
(11
inthj=i;
while MDD {
flil=1;
i=eli];
ct++4;
}
// printf (" ct=%d\n",ct);

now=lcm(ct,now);

}
ans[now]++;

29



Research Report 2020 S.T. Yau High School Science Award (Asia)

return;
}
int main(){

scanf(" %d”,&n);

for (i=0;i<n;i++) alil=i;

for (i=0;i<n;i++) b[i]=i;

m=n;

|1=1;

for (i=1i<=m;i4++) lx=i;

for (i=0;i<l;i4++){

for (j=05j<lj++){

for (k=0;k<n;k++) inv[k].x=k;
for (k=0;k<n;k++) inv[k].y=a[k];
sort (inv, inv4n,bo);
for (k=0;k<n;k++) c[k]=inv[k].x;
for (k=0;k<n;k++) inv[k].x=k;
for (k=0;k<n;k++) inv[k].y=Db[k];
sort (inv, inv+4n,bo);
for (k=0;k<n;k++) d[k]=inv[k].x;
/*
printf (" %d %d\n",ij);
for (k=0;k<n;k++) printf(" %d ",a[k]); printf("\n");
for (k=0;k<n;k++) printf(" %d ”,b[k]); printf(’\n");
for (k=0;k<n;k++) printf(" %d ”,c[k]); “printf ("\n");
for (k=0;k<n;k++) printf(" %d*, dfk]); printf("\n");
printf ("\n");
o
go();
next_permutation(b,b+n);

}

next_pepmutation(a,a+n);

}
for(i=1;i<=20;i4++) printf(" %d ",ans[i]); printf ("\n");

réturn0;
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