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Abstract 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting more 

than 6 million patients globally. Though previous studies have proposed several disease-related 

molecular pathways, how cell-type specific mechanisms contribute to the pathogenesis of PD is 

still mostly unknown. In this study, we analyzed single-cell RNA sequencing data of human neural 

grafts transplanted to the midbrains of rat PD models. Specifically, we performed cell-type 

identification, risk gene screening, and co-expression analysis. Our results revealed the unexpected 

genetic risk of oligodendrocytes as well as important pathways and transcription factors in PD 

pathology. The study may provide an overarching framework for understanding the cell non-

autonomous effects in PD, inspiring new research hypotheses and therapeutic strategies. 

 

Keywords 

Parkinson’s Disease; Single-cell RNA Sequencing; Oligodendrocytes; Cell Non-autonomous; Co-

expression Analysis; Transcription Factors 

  



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

es 
Award

 2 

Table of Contents 
1. Introduction ................................................................................................................................. 3 

2. Methods....................................................................................................................................... 3 

2.1 Dataset Overview, Quality Control, and Normalization ....................................................... 3 

2.2 Dimensionality Reduction, Clustering, and Cell-type Identification.................................... 4 

2.3 PD Risk Gene Enrichment Analysis ..................................................................................... 4 

2.4 Co-expression Analysis ........................................................................................................ 5 

3. Results ......................................................................................................................................... 5 

3.1 Clustering and Marker Testing Identified Neural Lineage Cells .......................................... 5 

3.2. Gene Enrichment Analysis Revealed the Association of TH+ PMNs and ODCs with PD 

Pathology .................................................................................................................................... 7 

3.2.1 Screening Familial PD Genes Across Seven Cell Types ............................................... 7 

3.2.2 Screening PD Risk Genes Identified By GWAS ........................................................... 9 

3.3 Gene Co-expression Analysis Uncovered PD-related Pathways and Transcription Factors 

in TH+ PMNs and ODCs .......................................................................................................... 10 

3.3.1 Gene Ontology and Transcription Factor Analysis of Module 1 ................................. 11 

3.3.2 Gene Ontology and Transcription Factor Analysis of M2 ........................................... 12 

4. Discussion ................................................................................................................................. 13 

5. Acknowledgments..................................................................................................................... 14 

6. Conflict of Interest .................................................................................................................... 14 

7. References ................................................................................................................................. 14 

7. Declaration of Academic Integrity ............................................................................................ 18 

 

  



20
20

 S.-T
. Y

au
 H

igh
 Sch

oo
l S

cie
nc

es 
Award

 3 

1. Introduction  

Parkinson’s Disease (PD), the second most prevalent neurodegenerative disease, is characterized 

by involuntary tremors, muscle stiffness, and slow movement [1]. As of 2016, PD affected 6.1 

million patients worldwide, and the number had increased by 144% since 1990 [2]. Unfortunately, 

the progression of PD is irreversible: patients’ midbrains undergo progressive loss of dopaminergic 

neurons (DaNs) and accumulation of toxic α-synucleins, misfolded proteins with unclear function 

[3]. Though past studies have uncovered disease-associated molecular pathways, the genetic traits 

that control the vulnerability of individual cells in PD are yet determined [4]. Moreover, because 

previous research mainly focused on DaNs, the pathological significance of many different cell 

types remains unknown. 

 

In the face of these challenges, single-cell RNA sequencing (scRNA-seq), a transcriptomic 

sampling technique, has shed new light on PD research [5]. scRNA-seq can identify cell types, 

reconstruct regulatory networks, and reveal the temporal transition of cell states in diverse 

biological processes [6]. To date, scRNA-seq has been used to study cancers [7], cardiovascular 

diseases [8], and neurological disorders [9]. Scientists in the PD research field have employed this 

technique to examine patient-derived DaNs in vitro [10] and dissect therapeutic neural transplants 

in vivo [11]. Nevertheless, few studies have used scRNA-seq to explore the genetic vulnerability 

of different cell types in PD models.  

 

To uncover the cell-type specific mechanisms in PD pathology, we analyzed the scRNA-seq 

dataset of human neural grafts in PD rat models created by Tilklová et al. [11]. Through clustering, 

gene enrichment examination, and co-expression analysis, we discovered that DaNs and 

oligodendrocytes (ODCs) robustly expressed PD-related genes. Additionally, we confirmed the 

significance of mitochondrial and cell signaling pathways in PD pathology. Based on co-

expression analysis, we identified a number of transcription factors (TFs) essential to the survival 

of DaNs and ODCs. Finally, we proposed a cell non-autonomous disease mechanism driven by 

ODCs, providing theoretical frameworks for future PD research.  

 

2. Methods 

2.1 Dataset Overview, Quality Control, and Normalization  

We obtained the data from a study by Tiklová et al. [11], which was currently the only open access 

scRNA-seq dataset based on animal PD models. Researchers in the original study transplanted 

human neural grafts developed from embryonic and fetal stem cells into the striatum of rats treated 

with 6-hydroxydopamine, a neurotoxin to create animal PD models [12]. Six months later, they 

tested the prognosis of the parkinsonian rats and observed a significant improvement in their motor 

functions. The neural grafts were then dissected for scRNA-seq, and the dataset was deposited in 

Gene Expression Omnibus (GEO) [13] under the access code GSE132758. 
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We processed the dataset in Seurat V3, an R package for analyzing scRNA-seq data [14]. We first 

performed quality control to drop out genes expressed in fewer than five cells and cells with fewer 

than 500 RNA transcripts. We then invoked the “sctransform” function to normalize the transcript 

reads and select highly variable genes for downstream analysis [15].  

 

2.2 Dimensionality Reduction, Clustering, and Cell-type Identification 

Before clustering the cells, we first reduced data dimensionality using p rincipal component 

analysis (PCA) [6], a technique to determine sources of expression variance using highly variable 

genes. Only the top 15 principal components (PCs) were preserved for downstream analysis, for 

after PC15 not much additional variation was captured (Supplementary Figure 1). We then 

clustered the cells with “FindNeighbors” (shared nearest neighbors) and “FindClusters” (the 

Louvain method) [16]; the clusters were visualized by uniform manifold approximation and 

projection (UMAP) [6], a computational method for dimension reduction (Supplementary Figure 

2). Eventually, we used cluster-specific markers calculated by “FindAllMarker” (non-parametric 

Wilcoxon rank-sum test) [17] and canonical neuronal markers curated by Abcam [18] to identify 

the cell type of each cluster (Supplementary Figure 3).  

 

2.3 PD Risk Gene Enrichment Analysis  

Our next goal was to investigate the expression of PD genes in different cell types. We obtained 

20 familial PD genes from the database of Online Mendelian Inheritance in Man, a free-access 

database of human genetic traits [19]. The cell-type-specific enrichment levels of these genes were 

visualized in ridge plots. We also evaluated the expression of over 2000 PD risk genes gathered 

from three sources: DisGeNET [20], ParkinsonsUK-UCL [21], and a study by Reynolds et al [22]. 

The genes were identified by genome-wide association studies (GWAS), an approach to associate 

genetic variants with disease phenotypes [23].  

 

To analyze the PD risk genes, we used Expression Weighted Cell Type Enrichment (EWCE), a 

technique to determine the enrichment significance of a gene list in a cell type [24]. EWCE 

accepted a target gene list and a background list as inputs. In our case, the target list comprised PD 

risk genes, and the background list was chosen randomly from all genes expressed in the dataset. 

The two lists were processed in a series of steps: 1) the average expression levels of every gene in 

the background list were calculated in a given cell type; 2)  the previous step was repeated in the 

target list; 3) the average expression of the background list was used to compute the probability 

distribution of expression in the cell type 4) the probability distribution was used to calculate the 

standard deviation of expression in the target list. Ultimately, a high standard deviation indicated 

that the target list was significantly expressed in the cell type. 
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2.4 Co-expression Analysis 

To further investigate the genetic traits of different cell types, we employed Co-Expression 

Modules identification Tools (CEMiTool), a computational approach to discover co-activated 

gene modules [25]. We first subset the dataset to focus on relevant cell types identified by PD risk 

gene screening. We then invoked “cemitool” and uncovered two co-expression gene modules. To 

understand the functional characteristics of the modules, we performed gene ontology (GO) 

analysis using g:Profiler, an online server for GO analysis [26] (Supplementary Figure 4).  

 

We also sought to explore the regulatory networks of each module. We utilized iRegulon, an 

algorithm for identifying the motifs and TFs of a gene list by the ranking-and-recovery methods 

[27]. During the ranking step, each gene in the co-expression module was scanned for its enriched 

motifs and TFs. After all genes were scanned, one list of motifs and one list of TFs were created. 

The algorithm then ranked the motifs and TFs according to the number of genes they were 

associated with. During the recovery step, the genes associated with the ranked lists of motifs/TFs 

were compared with a randomly generated background list of genes. Eventually, the algorithm 

recognized genes that successfully distinguished the ranked list from the unranked background list 

as candidate target genes.  

 

3. Results 

Our research was guided by two questions: 1. how are PD related genes expressed in different cell 

types in the brain? 2. what can the transcriptomic profiles of individual cells suggest about their 

vulnerability in PD? To address these questions, we analyzed scRNA-seq data of human neural 

grafts transplanted to the midbrain of PD rat models. Curiously, the results revealed the enrichment 

of PD-related genes in not only DaNs but also ODCs. Further analysis of co-expressed genes 

suggested that DaNs and ODCs interact via myelination and paracrine signaling, which may render 

new insights into PD pathogenesis.   

 

3.1 Clustering and Marker Testing Identified Neural Lineage Cells  

Our fundamental goal was to identify the cellular composition in the neural grafts. To start with, 

we first filtered out low quality cells and normalized the molecular counts. Next, we reduced the 

dimensions of the data and clustered the cells by various algorithms [6] (Supplementary Figures 1 

and 2). To determine the cellular identities in the samples, we carefully examined the top three 

computational markers of each cluster and the expression of canonical cell markers [18] 

(Supplementary Figure 3) (Figure 1).  

 

In the end, seven cell types were uncovered: TH+ immature neurons (TH+ IMNs), TH+ 

postmitotic neurons (TH+ PMNs), astrocytes (ASTs), oligodendrocytes (ODCs), radial glia-like 

cells (RGL-LCs), cancer-like stem cells (CLSCs), and neural crest-derived stem cells (NC-DSCs) 
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(Figure 2). Notably, TH+ PMNs closely resembled DaNs due to their expression of TH (DaN 

marker), NeuN, and SYP (mature neuronal markers). ASTs were characterized by astrocyte 

markers AQP4 and GFAP; ODCs were identified by oligodendrocyte markers OLIG1, OLIG2, 

and MBP. Overall, the clustering and cell type assignment results confirmed the presence of neural 

lineage cells—especially DaN-like cells—in the neural grafts, which provided foundation for 

downstream analysis (Figure 2).  

 
Figure 1: The Expression of Marker Genes Across Seven Cell Types. In the stacked violin plots, the 

height of the “violin” is the enrichment level of a gene, and its width is the relative proportion of the cells 

at an enrichment level. The expression of marker genes revealed seven unique cell types in the dataset: 

TH+ immature neurons (TH+ IMNs), TH+ postmitotic neurons (TH+ PMNs), astrocytes (ASTs), 

oligodendrocytes (ODCs), radial glia-like cells (RGL-LCs), cancer-like stem cells (CLSCs), and neural 

crest-derived stem cells (NC-DSCs). 
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Figure 2: Cell Clusters with Assigned Identities Visualized by UMAP. The seven cell types were 

visualized by uniform manifold approximation and projection (UMAP), a dimension reduction algorithm. 

UMAP_1 and UMAP_2 represented the first two of the fifteen dimensions of the dataset. 

 

3.2. Gene Enrichment Analysis Revealed the Association of TH+ PMNs and 

ODCs with PD Pathology 

After determining the identity of each cluster, we attempted to answer the first guiding question: 

how are PD related genes expressed in different cell types in the brain? Specifically, we aimed to 

explore genes associated with both familial and sporadic forms of PD. The familial cases of PD 

could be caused by mutations in SNCA, LRRK2, PINK1, PARK7, etc. [28], while the genetic 

cause for sporadic PD was more obscure. Luckily, genome-wide association studies (GWASs)—

a method to relate genetic mutations to disease phenotypes—still identified commonly mutated 

risk genes among sporadic PD patients [23] [29]. In this section, we sought to evaluate the 

expression of familial PD genes and GWAS-identified risk genes across all clusters, which may 

reveal the genetic risk in each cell type. 

 

3.2.1 Screening Familial PD Genes Across Seven Cell Types 

We found 20 genes associated with familial cases of PD from Online Mendelian Inheritance in 

Men (OMIM), a free access database of human genetic traits. The expressions of these genes were 

visualized in ridge plots (Figure 3). Not surprisingly, TH+ PMNs had an above-average expression 

of ten familial PD genes (SNCA, PINK1, UCHL1, ATP13A2, HTRA2, VPS35, EIF4G1, GBA2, 

DNAJC6, and SYNJ1), which corresponded to the fact that DaNs tend to develop PD phenotypes 

[30]. Second to TH+ PMNs, ODCs showed an elevated expression of five genes (LRRK2, SNCA, 

FBXO7, GIGYF2, and YPS13C). In particular, LRRK2, the gene underlying the autosomal 
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dominant Parkinson disease 8, was uniquely expressed in ODCs but not in TH+ PMNs [31]. Based 

on this observation, we wondered whether the mutations of LRRK2 may cause the malfunctioning 

ODCs to influence DaNs through cell-cell interaction (the cell non-autonomous effects of ODCs). 

Finally, no other cell types demonstrated a significantly high expression of familial PD genes, so 

the results mostly reflected the vulnerability of TH+ PMNs and the potential involvement of ODCs 

in PD.  
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Figure 3: Expression Pattern of Familial PD Genes Visualized by Ridge Plots. The horizontal position 

of the “ridge” is the expression level of a gene, and its height is the relative proportion of the cells at an 

expression level. TH+ PMNs had an above-average expression of ten genes: SNCA, PINK1, UCHL1, 

ATP13A2, HTRA2, VPS35, EIF4G1, GBA2, DNAJC6, SYNJ1, and VPS13C. ODCs had above-average 

expression of five genes: LRRK2, SNCA, FBXO7, GIGYF2, and YPS13C. No other cell types demonstrated 

a significantly elevated expression of familial PD genes.  

 

3.2.2 Screening PD Risk Genes Identified By GWAS 

To offset the potential bias from a small number of familial PD genes, we next investigated the 

expression of more than 2000 risk genes identified by GWAS. We gathered the risk genes from 

three separate sources: DisGeNET [26], ParkinsonsUK-UCL [21], and a study by Reynolds et al. 

[22]. The three gene sets each had 2077, 330, and 88 items, and we analyzed them using Expression 

Weighted Cell Type Enrichment (EWCE), a technique to calculate the enrichment significance of 

a gene list [24]. In fact, the ability of EWCE to examine a list instead of one gene at a time greatly 

improves the evaluation efficiency.  

  

In the first two lists (DisGeNet and ParkinsonsUK-UCL), TH+ PMNs had the highest enrichment 

significance, and ODCs had the second highest. In the third list (Reynolds et al.), however, only 

ODCs had a significant expression. This unexpected outcome might result from the small number 

of genes in the list (only 88 genes). Overall, the screening of over 2000 PD risk genes confirmed 

that both TH+ PMNs and ODCs were genetically relevant to PD.  
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Figure 4: Enrichment Analysis of PD Risk Genes. A high standard deviation suggested that the target 

list was significantly expressed in the cell type. The asterisk (*) indicated that the expression level was 

statistically significant (p<0.05). In general, PD risk genes were enriched in both TH+ PMNs and ODCs. 

 

3.3 Gene Co-expression Analysis Uncovered PD-related Pathways and 

Transcription Factors in TH+ PMNs and ODCs 

We next sought to answer our second guiding inquiry: what can the transcriptomic profiles of cells 

suggest about their vulnerability in PD? More specifically, we aimed to identify genes whose 

expression rises and falls together in TH+ PMNs and ODCs. By elucidating the functions of 

coactivated genes, we may discover molecular pathways and TFs that determine the cell-type 

specific risk to PD.  

 

We identified co-activated genes with Co-Expression Modules identification Tool (CEMiTool), a 

computational approach to cluster genes based on their expression pattern [25]. Eventually, two 

co-expression modules with 301 and 75 items were discovered. Module 1 (M1) was enriched in 

TH+ PMNs, while module 2 (M2) was overrepresented in ODCs (Figure 5). Though we were also 

curious about genes expressed in both cell types, we did not find a module that was enriched in 

both.  

 

After determining the co-activated genes, we planned to examine the gene ontology (GO) and TFs 

of each module using g:Profiler [26] and iRegulon [27]. g:Profiler is an online tool to annotate the 
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biological functions of a gene set, and iRegulon is a method to detect TFs that regulate genes in a 

target list. The results for M1 and M2 were described separately below. 

 
Figure 5: Co-expression Module Enrichment Levels in ODCs and TH+ PMNs. The sizes and colors of 

the dots represented the enrichment degree of a gene module in a cell type. A redder and larger dot had a 

higher enrichment degree. M1 was mostly enriched in TH+ PMNs, while M2 was overrepresented in ODC.  

 

3.3.1 Gene Ontology and Transcription Factor Analysis of Module 1 

GO analysis demonstrated that M1 was strongly associated with the term “Parkinson’s Disease”. 

In fact, the GO term contained 48 out of 301 genes from M1, including those related to familial 

PD (SNCA, PARK7, UCHL1, etc.), ATP synthetase (ATP5F1A, ATP5F1B, etc.), and cytochrome 

c oxidase (COX5B, COX7C, etc). Not surprisingly, M1 also had mitochondria-associated terms 

such as “oxidative phosphorylation” and “ATP-synthesis coupled electron transport”, which 

supported the theory of mitochondrial stress in PD [32]. Furthermore, the GO terms included 

“vesicles”, “extracellular exosome”, and “proton transmembrane transport”, reinforcing the fact 

that the signaling capacity of DaNs is impaired in PD [33]. Overall, the GO analysis of M1 

confirmed the association of PD pathology with the mitochondrial and cell signaling pathways.  

 

iRegulon uncovered fifteen TFs for M1, and five of them had known association with PD (TAF1, 

REST, NFE2, UBE2K, and HSF1) (Supplementary Table 1). Interestingly, literature search 

suggested that all five TFs were neuroprotective. For example, RE1-silencing transcription factor 

(REST), a TF that suppresses the expression of neuronal genes outside neural-lineage cells, was 

found to be significantly downregulated in patient-derived DaNs [34]. The ablation of REST in 
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mice [35] also increased the animals’ susceptibility to 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP), a drug used to create PD models [36]. Furthermore, heat shock factor 

1 (HSF1), a gene that facilitates the correct folding and distribution of proteins, was observed to 

reduce the concentration and toxicity of α-synuclein aggregates [37]. Based on these facts, 

researchers may consider the five TFs of M1 as therapeutic targets to promote the survival of DaNs 

in PD patients’ midbrain.  

 

Out of the remaining ten TFs, we noted two for their profound influence in the central nervous 

system (CNS). Kruppel-like factor 4 (KLF4), a gene involved in a wide range of cellular responses, 

could suppress the regenerative capacity of neurons in the CNS [38]. Meanwhile, tumor protein 

p53 (TP53), a famous tumor suppressor, would protect neurons from death when it was ablated 

[39]. Though no existing studies linked KLF4 and TP53 to PD, the two TFs may be generally 

involved in the processes of neural regeneration and degeneration. Therefore, future researchers 

may also explore the potential implications of KLF4 and TP53 in PD therapies. 

 

 

Figure 6: GO Analysis of M1 genes. The length of the bar indicated the confident level of each GO term, 

and a longer bar represented more confidence. The GO analysis of M1 demonstrated that PD genetics were 

related to both mitochondrial pathways and cell signaling. 

 

3.3.2 Gene Ontology and Transcription Factor Analysis of M2 

The GO terms of M2 included “nervous system development”, “neurogenesis”, and “myelin 

sheath”, which generally described the supportive functions of ODC—cells where M2 was most 

enriched. Though the GO results of M2 did not include “Parkinson’s Disease”, the terms “synapse” 
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and “cell junction” hinted at the cell non-autonomous mechanisms of PD. We thus hypothesized 

that ODCs may interact with DaNs through synaptic transmission and cell junctions, potentially 

influencing the susceptibility of DaNs. 

 

M2 also had two PD-related TFs: HSF1 and Serum response factor (SRF) (Supplementary Table 

2). SRF, a gene that regulates cytoskeleton growth, is important for both DaNs and ODCs [40]. 

For instance, knocking out SRF in DaNs can increase the neuronal susceptibility to MPTP [41], 

while silencing it in neural precursor cells may inhibit oligodendrocyte differentiation [42]. 

Notably, a past study reported that SRF-deficient neurons could affect healthy ODCs through 

paracrine signaling [43], so we wondered whether the downregulation of SRF in ODCs may 

likewise increase the vulnerability of DaNs. In general, SRF serves a neuroprotective role in DaNs 

and ODCs, and its significance in the cell non-autonomous mechanisms of PD should be further 

examined. 

 
 

Figure 7: GO Analysis of M2 genes. The bar plot demonstrated GO terms related to the functions of 

ODCs. Though the GO terms did not include “Parkinson’s Disease”, there were “synapse” and “cell 

junction”, providing clues for cell non-autonomous effects; ODCs may interact with DaNs through synapse 

or cell junctions, thereby influencing the phenotypes of DaNs in PD. 

 

4. Discussion 

Overall, our computational analysis revealed that PD was not only associated with DaNs but also 

ODCs. Further investigation of co-activated gene modules indicated that DaNs may be impacted 

by both cell-autonomous (mitochondrial functions) and non-autonomous effects (exosomes, 
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paracrine, etc.). In particular, ODCs might affect DaNs through myelination, cell junctions, and 

synaptic transmission. We also noted that the loss of neuroprotective genes such as REST, HSF1, 

and SRF might exacerbate individual cells’ susceptibility to PD.  

 

Admittedly, our study also has some shortcomings. Because scRNA-seq is a relatively new 

technique, few scientists in the PD research field have utilized it in their studies. In fact, the 

scRNA-seq dataset we use is the only open access one that includes animal PD models, and it 

inevitably has some limitations. For instance, the dataset does not contain samples from wild type 

rats, so we could not determine the downregulation and upregulation of genes in the PD rat models. 

In addition, the number of TH+ PMNs and ODCs in the neural grafts is relatively small, which 

might have introduced bias into our study. Increasing sample size is also challenging, for 

integrating multiple datasets always creates more caveats.  

 

To address these problems, we propose a scRNA-seq study that would include samples from 

wildtype rats and a large number of mature neural cells. Moreover, we would test our hypothesis 

that the silencing of SRF (a TF described in section 3.3.2) in ODCs would induce phenotypic 

changes in wildtype DaNs. To achieve the goal, we would perform Cre-dependent ablation of SRF 

in ODCs only. We would monitor myelination states, paracrine signaling, and signs of cellular 

stress responses in DaNs to verify the cell non-autonomous effects of ODCs. Eventually, we wish 

to elucidate the functional interdependence between ODCs and DaNs, thereby illuminating the 

genetic and cellular basis of PD pathogenesis.  
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