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Solving Megaminx Puzzle with Group Theory 
 

 

Abstract  

 

Megaminx is a type of combination puzzle, generalized from the conventional Rubik’s cube. Although the 

recipes for manually solving megaminx are known, the structure of the group of all megaminx moves remains 

unclear, further the algorithms for solving megaminx blindfolded are unknown. 

 

First, this work proves the structure of the megaminx group: semidirect product of a orientation twisting sub-

group and a position permutation subgroup, the former subgroup is decomposed further into the product of 

multiplicative groups of integers modulo 2 or 3, the later subgroup is the product of alternating groups. Second, 

the work gives the sufficient and necessary conditions for a configuration to be solvable. Third, the work shows 

a constructive algorithm to solve the megaminx, which is suitable for the blindfolded competition. 
 

Contributions 

 

1.  prove the structure of the megaminx move group, theorem 3.12; 

2. give sufficient and necessary conditions for a configuration to be solvable, theorem 3.8; 

3. construct an algorithm to solve megaminx, corollary 3.4. 

 



Solving Megaminx Puzzle with Group Theory
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Abstract

Megaminx is a type of combination puzzle, generalized from the conventional Rubik’s
cube. Although the recipes for manually solving megaminx are known, the structure of
the group of all megaminx moves remains unclear, further the algorithms for solving
megaminx blindfolded are unknown.

First, this work proves the structure of the megaminx group: semidirect product
of a orientation twisting subgroup and a position permutation subgroup, the former
subgroup is decomposed further into the product of multiplicative groups of integers
modulo 2 or 3, the later subgroup is the product of alternating groups. Second, the work
gives the sufficient and necessary conditions for a configuration to be solvable. Third,
the work shows a constructive algorithm to solve the megaminx, which is suitable for
blindfolded competition.

Keywords: Group, Semidirect product, Commutator, Conjugate, Generators

1. Introduction

The Rubik’s cube is a family of combination puzzles that has become very popu-
lar in various cultures since its invention in 1974 by Ernö Rubik. The mathematical
structure underlying the Rubik’s cube is both profound and fascinating, it has intrinsic
connections with group theory [1]. The classical Rubik’s cube has been generalized to5

many different types of puzzles, such as pyraminx, megaminx and so on. Comparing
to the classical Rubik’s cube, megaminx has much more complicated combinatorial
structures but is much less studied. Although there are several manual receipts to solve
megaminx, there are few works to clarify the megamnix group structure and the solv-
ability in a rigorous mathematical way. This project aims to describe the structure of10

the group of all megaminx moves, clarify the sufficient and necessary condition for a
solvable state, and construct a sequence of moves to solve a given state.

1.1. Rubik’s Cube Group
The Rubik’s cube has been thoroughly studied using group theory, lecture notes

can be found in [2] and [3]. Suppose G represents all the moves of a Rubik’s cube,15

∗ is the composition operator of the moves, then (G,∗) forms a non-Abelian group.
Let GO be the set of moves which fix the positions of all the cubies but permute the
orientations, then GO is a normal subgroup of G. Let GP be the set of moves with
preserve the orientations of all the cubies but permuate the positions, then GP is a
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Figure 1: A megaminx with face labels, the megaminx is a dodecahedron, the 12 faces are labeled as
{A,B,C,D,E,F,G,H, I,J,K,L}. Each face has one opposite face, there are 6 pairs in total, {A,G}, {B,H},
{C, I}, {D,J}, {E,K} and {F,L}.

non-normal subgroup. G is the semidirect product of GO and GP, G = GO o GP.20

Furthermore, the total orientation of 8 edge cubies is even, the total orientation of 12
corner cubies is divisible by 3, hence GO =Z11

2 ×Z7
3. The parities of the permuation of

the corner cubies and that of the edge cubies are equal, therefore GP = (A12×A8)oZ2.
Therefore, the Rubik’s cube group has the structure

G= GO oGP = (Z11
2 ×Z7

3)o ((A12×A8)oZ2).

1.2. Rubi’s Cube Algorithms25

There are three types of algorithms to solve a Rubik’s cube, all of them are based
on group theory and tailored for different type of competitions.

In the first type, a human player solves a Rubik’s cube by memorizing a set of rules
and special patterns of configurations, and by observing the current pattern to select a
rule to further transform, such as the most popular seven step method [4];30

The second type of algorithms are for blindfolded competition, a human player
observes and memorizes the starting configuration in mind, and perform the moves
without further observations. The player needs to memorize a few generators of G
and use conjugation trick to generalize them for all situations. More specifically, the
generators of GP are corner cubie 3-cycles and edge cubie 3-cycles, the generators of35

GO are pair corner cubie twists and pair edge cube flips, which will be explained in
details in subsection 3.3.

The third type of algorithms are performed by computers. Thistlethwaite’s algo-
rithm [5] finds a sequence of nesting normal subgroups

〈e〉= G4 EG3 EG2 EG1 EG0 =G,
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each Gk acts on the solved configuration to generate a space Sk, then we obtain a se-40

quence of nesting configuration spaces

S4 ⊂ S3 ⊂ S2 ⊂ S1 ⊂ S0,

where S4 contains only the solved configuration, S0 is the space of all possible solvable
configurations. At each step, the Thistlethwaite algorithm finds a move in Gk−1/Gk to
move the current configuration from Sk to Sk−1. The upper bound is 52. Kunkle and
Cooperman improved the bound to 26 in [6]. In 2010, the sharp upper bound of steps45

to solve a Rubik’s cube, namely the God’s number, is proven to be 20 with the aid of
huge computational resources [7].

1.3. Contributions

To the best of the knowledges of the author, the God’s number for Megaminx is
widely open today. The group structure of Megaminx, the type two and three algo-50

rithms haven’t been systematically studied. The current project focuses on studying the
group structure and the second type of computational algorithm of Megaminx. There-
fore, our main contributions are

• prove the structure of the megaminx move group, theorem 3.12;

• give sufficient and necessary conditions for a configuration to be solvable, theo-55

rem 3.8;

• construct an algorithm to solve megaminx, corollary 3.4.

2. Basic Concepts in Group Theory

This section reviews some basic concepts in group theory, and facts for symmetry
group, then introduces the techniques of commutator and conjugation to generate 3-60

cycles.

2.1. Basic Concepts

Definition 2.1 (Group). A group (G,∗) consists of a set G and an operation ∗ such
that:

1. G is closed under ∗, for all a,b ∈ G, then ab ∈ G;65

2. ∗ is associative, for all a,b,c ∈ G, (a∗b)∗ c = a∗ (b∗ c);
3. there is an identity element e ∈G, which satisfies e∗g = g∗e = g, for all g ∈G;
4. inverse exists, for any g ∈ G, there exists an h ∈ G, such that g∗h = h∗g = e.

Definition 2.2 (Subgroup). A nonempty set H of a group (G,∗) is called a subgroup of
G if (H,∗) is a group.70

Definition 2.3 (Generator). Let G be a group and S be a subset of G. We say S is a
set of generators of G, if G = 〈S〉; that is, every element of G can be written as a finite
product (under the group operation) of elements of S and their inverse.
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Definition 2.4 (Normal Subgroup). A subgroup N of G is said to be a normal subgroup,
if75

g−1Ng⊆ N ∀g ∈ G,

and denoted as N EG.

Definition 2.5 (Quotient Group). Let N be a normal subgroup of a group G. We define
the set G/N to be the set of all left cosets of N in G,

G/N = {gN : g ∈ G}.

Define an operation on G/N as follows. For each aN and bN in G/N, the product

(aN) · (bN) = (ab)N.

Then (G/N, ·) forms a group, the so-called quotient group.80

Definition 2.6 (Direct Product). Given groups (G,∗) and (H,?), the direct product
G×H is defined as follows:

1. The underlying set is the Cartesian product, GH. That is, the ordered pairs
(g,h), where g ∈ G and h ∈ H.

2. The binary operation on G×H is defined component-wise: (g1,h1) · (g2,h2) =85

(g1 ∗g2,h1 ?h2)

then (G×H, ·) forms a group.

Let G be a group, H and K are subgroups satisfying: H and K are normal in G,
H ∩K = {e}, HK = G, then G is isomorphic to the direct product H×K.

Definition 2.7 (Semidirect Product). Let G be a group, H and K are subgroups satis-90

fying:

1. H is normal in G,
2. H ∩K = {eG},
3. HK = {hk|h ∈ H,g ∈ K}= G,

then G is the semidirect product of H and K, denoted as G = H oK.95

If the group G is a semi-direct product of its subgroups H and Q, then the semi-
direct Q is isomorphic to the quotient group G/H.

Definition 2.8 (Homomorphism). Let (G,∗) and (H,?) be two groups. A homomor-
phism from G to H is a map ϕ : G→H such that ϕ(a∗b) = ϕ(a)?ϕ(b) for all a,b∈G.

It can be shown that the image of ϕ , im ϕ = {ϕ(g) : g ∈ G}, is a subgroup of H.100

Definition 2.9 (Kernel). The kernel of a homomorphism ϕ : G→ H is defined to be
{g ∈ G : ϕ(g) = eH}. That is, ker ϕ is the pre-image of eH in G.

It can be shown that the kernel of ϕ , ker ϕ , is a subgroup of G.
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Definition 2.10 (Right Group Action). A right group action of a group (G,∗) on a
non-empty set A is a map A×G→ A satisfying the following properties:105

1. (a ·g1) ·g2 = a · (g1 ∗g2) for all g1,g2 ∈ G and a ∈ A.
2. a · e = a for a ∈ A.

Definition 2.11 (Transitive Action). If a group G acts on a set A, then the orbit of a∈ A
is the set {a ·g : g ∈ G}. If a group action has only one orbit, we say that the action is
transitive.110

G acts on the set of ordered pairs (C1,C2) of different unoriented corner(edge)
cubies, (C1,C2) ·M = (M(C1),M(C2)). This action is transitive. In the same way,
G acts on the set of ordered triples (C1,C2,C3) of different unoriented corner(edge)
cubies.

2.2. Symmetry Group115

Definition 2.12 (Symmetry Group). The symmetric group on n letters is the set of
bijections from {1,2, . . . ,n} to {1,2, . . . ,n}, with the operation of composition, and
denoted as Sn.

Definition 2.13 (Cycle). The k-cycle (i1i2 · · · ik) is the element τ ∈ Sn, defined by

τ(i1) = i2,τ(i2) = i3, · · · ,τ(ik−1) = ik,τ(ik) = i1,

and τ( j) = j if j , ir for any r. The support of the cycle is the set {i1, i2, . . . , ik} of120

numbers which appear in the cycle, and denoted as suppτ .

Two cycles τ and σ are disjoint, if they have no numbers in common, namely
suppσ ∩ suppτ = /0. If σ ,τ ∈ Sn are disjoint cycles, then στ = τσ . Any σ ∈ Sn can be
written as a product of disjoint cycles, this product is called the disjoint cycle decom-
position of σ .125

Sn is generated by the 2-cycles, namely, any permutation in Sn can be written as a
finite product of 2-cycles. If a permutation σ ∈ Sn is a product of an even number of
2-cycles, then σ is called even; if σ is a product of an odd number of 2-cycles, then σ

is called odd.

Definition 2.14 (Alternating Group). All the even permutations in Sn form a subgroup130

of Sn, which is called the alternating group, and denoted as An.

Alternating groups are generated by 3-cycles.

2.3. Commutator and Conjugate

Definition 2.15 (Commutator). Suppose σ ,τ ∈G, the commutator of σ and τ [σ ,τ] is
defined as135

[σ ,τ] = στσ
−1

τ
−1.

If σ and τ have disjoint support, namely no overlap, then they commute, [σ ,τ] = e;
if their supports have only a small amount of overlap, then σ and τ almost commute.
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Lemma 2.1 (Commutator). Suppose σ ,τ ∈ Sn, and supp(σ)∩supp(τ)= {y}, σ(x)= y
and τ(y) = z, then [σ ,τ] is at most a 3-cycle (x,y,z).

Proof. The proof is based on direct computation,140

[σ ,τ](x) = στσ
−1

τ
−1(x) = τσ

−1
τ
−1(σ(x)) = τσ

−1
τ
−1(y)

= σ
−1

τ
−1(τ(y)) = τ

−1(σ(τ(y))) = τ
−1(τ(y)) = y.

[σ ,τ](y) = στσ
−1

τ
−1(y) = τσ

−1
τ
−1(σ(y)) = σ

−1
τ
−1(τ(σ(y)))

= σ
−1

τ
−1(σ(y)) = τ

−1(σ−1(σ(y))) = τ
−1(y) = z.

[σ ,τ](z) = στσ
−1

τ
−1(z) = τσ

−1
τ
−1(σ(z)) = τσ

−1
τ
−1(z) = σ

−1
τ
−1(τ(z))

= σ
−1

τ
−1(y) = τ

−1(σ−1(y)) = τ
−1(x) = x

For any other element γ < {x,y,z}, then it is straight forward to show [σ ,τ](γ) = γ .

Definition 2.16 (Conjugate). Let G be a group. Two elements σ and τ of G are conju-
gate, if there exists an element γ in G such that

γσγ
−1 = τ.

One says also that τ is a conjugate of σ and that σ is a conjugate of τ .

Lemma 2.2 (Conjugate). Suppose σ ∈ Sn is a cycle σ = (i1i2 . . . ik), and γ ∈ G, such145

that γ( jl) = il , l = 1,2, . . . ,k, then

γσγ
−1 = ( j1 j2 . . . jk).

Proof. The proof is based on direct computation,

γσγ
−1( jl) = σγ

−1(γ( jl)) = σγ
−1(il) = γ

−1(σ(il)) = γ
−1(il+1) = jl+1.

For any other element x < {i1, i2, . . . , ik}, then it is straight forward to show γσγ−1(x) =
x.

3. Megaminx Group150

This section studies the megaminx group structure, shows the sufficient and neces-
sary conditions for solvable configurations and construct an algorithm to solve megam-
inx.

3.1. Megaminx notations

The megaminx is a dodectahedron, with 12 faces, each face is a pentagon. The155

faces are labeled using capital letters from A to L, as shown in Fig. 1.
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Cubies. The megaminx is composed of 62 small cubes, which are typically called
“cubies”. The cubies in corners are called “corner cubies”. Each corner cubie has 3
visible faces, and there are 20 corner cubies. The cubies with 2 visible faces are called
“edge cubies”, there are 30 edge cubies. The cubes with a single visible face are called160

“center cubies”. There are 12 center cubies.
To name a corner cubie, we simply list its visible faces in counter-clockwise order

using lower case letters. For example, the corner cubie at the intersection of three faces
A,B,C is denoted as abc. If we don’t consider the orientation, we can also call the cubie
as bca and cab. In this situation, the cubie is called “unoriented cubie”. If we care165

about which face of the cubie is listed first, then the cubie is called “oriented cubie”.
The oriented cubies abc and bca are different but the unoriented cubies, abc and bca
are the same. Similarly, to name edge and center cubies, we just list the visible faces
of the cubies. We also frequently talk about “cubicles”, which are labeled the same
way as cubies, but they describe the space in which the cubie lives. The cubicles are170

labeled the same way as cubies. When we move the megaminx, the cubies are moved,
but the cubicles remain unchanged. However, we assume when we rotate a face of the
megaminx, all center cubies stay in their cubicles, for the purposes to remove some
global symmetry.

Moves. Furthermore, we need to name the moves of the megaminx. We use a capital175

letter A to represent a rotation of face A, the rotation is counter-clockwise with respect
to the normal to the face A. A−1 represents a clockwise rotation of face A with respect to
the normal. Similarly, each letter from A to L represents a counter clock-wise rotation
of the corresponding face. These rotations are called basic moves.
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(a). front view (b). back view

Figure 2: The cross field is defined on the megaminx in order to define the orientation of all the cubies.

Orientations. The orientation of the cubies are defined in a complicated way. For each180

unoriented corner cubie with a label c1c2c3, if ck is the smallest in the lexicographical
order of letters, k = 1,2,3, then we label a cross on the ck face of the cubie. Similarly,
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for each edge cubie with a label c1c2, we put a cross on the face of the cubie with the
smaller letter. Each cubie has a unique face with a cross, which we call as primary face.
Suppose after some moves, an oriented corner cubie reaches the position of a cubicle.185

Suppose the primary face of the cubie coincides with the primary face of the cubicle,
then the orientation of the cubie is 0; if we need to rotate the cubie counter-clockwisely
by an angle 2π

3 to align the two primary faces, then the orientation of the cubie is 1; if
we need to rotate the cubie counter-clockwisely by an angle 4π

3 to align the two primary
faces, then the orientation of the cubie is 2. We can define the orientation of an edge190

cubie in the similary way. Suppose the primary face of the cubie coincides with the
primary face of the cubicle, then the orientation of the cubie is 0; if we need to rotate
the cubie counter-clockwisely by an angle π to align the two primary faces, then the
orientation of the cubie is 1.

Configurations. For each corner cubie, we simply list its visible faces in counter-195

clockwise order using lower case letters, the letter on the primary face is at the first.
Then we sort all the corner cubies using lexicographical order of their names, and de-
noted as {C1,C2, · · · ,C20}. The edge cubies are sorted in the similar way, and denoted
as {E1,E2, · · · ,E30}. In each configuration, the permutation of the unoirented corner
cubies is denoted as σ , the permutation of the unoriented edge cubies is denoted as τ .200

The orientations of the corner cubies are represented as a vector x = (x1,x2, · · · ,x20),
xk ∈Z3, k = 1,2, . . . ,20, representing the orientation of Ck. The orientations of all edge
cubies are represented as a vector y = (y1,y2, · · · ,y30), yi ∈ Z2, i = 1,2, . . . ,30, repre-
senting the orientation of Ei. The whole configuration is represented by (σ ,τ,x,y).
The initial solved configuration is denoted as (σ0,τ0,0,0).205

3.2. Megaminx Group Definition and Properties
Definition 3.1 (Megaminx Move). A megaminx move is the rotation of a particular
face of the dodecahedron in the counter-clockwise direction by 2π

5 .

We refer each move using the same capital letter of the corresponding dodecahe-
dron face. We write the set of basic moves as210

{A,B,C,D,E,F,G,H, I,H,K,L} (1)

where the move A rotate the dodecahedron face with label A by 2π

5 counter-clockwisely.
The other moves are denoted in the same way. We can make the set of moves of
the megaminx into a group, denoted as (G,∗). The elements of G are all possible
moves of the megaminx. Two moves are considered the same if they result in the same
configuration of the megaminx. If M1 and M2 are two moves, then M1 ∗M2 is the move215

where we first perform M1 and then do M2.
If C is an oriented cubie, we write M(C) for the oriented cubicle that C ends up

in after applying the move M, with the faces of M(C) written in the same order as the
faces of C. In more details, the first face of C should end up in the first face of M(C),
and so on.220

Theorem 3.1. The set of megaminx moves forms a group (G,∗), with the operation ∗
on moves being the composition of corresponding sequence of moves. We will call this

8



group (G,∗) the Megamnix Group, with generators

G= 〈A,B,C · · · ,K,L〉.

Proof. The proof is straight forward by using the definition of group.

• G is certainly closed under the operation ∗, since if M1 and M2 are moves, M1 ∗225

M2 is a move as well.

• If we let e be the empty move, then M ∗ e means first perform M and then do
nothing, which is the same as just doing M, so M ∗e = M. (G,∗) has an identity.

• Suppose M is a basic move, then M5 = e, namely M−1 = M4. For compound
move230

(M1M2 . . .Mk)
−1 = M−1

k M−1
k−1 . . .M

−1
1 ,

where Mi’s are basic moves.

• The operation ∗ is associative. A move can be defined by the change in con-
figuration it causes, the associativity can be easily verified as follows: first, we
investigate what a sequence of two moves does to the megaminx. If M1 and
M2 are two moves, M1 moves C to the cubicle M1(C), the move M2 moves it to235

M2(M1(C)), therefore (M1 ∗M2)(C) = M2(M1(C)). Second, consider a sequence
of three moves,

[(M1 ∗M2)∗M3](C) = M3([M1 ∗M2](C)) = M3(M2(M1(C))),

on the other hand

[M1 ∗ (M2 ∗M3)](C) = (M2 ∗M3)(M1(C)) = M3(M2(M1(C))).

Therefore (M1 ∗M2)∗M3 = M1 ∗ (M2 ∗M3).

Therefore, (G,∗) is indeed a group.240

We can write each move of the megaminx using a modified cycle notation, which
describes where each oriented cubie moves and where each face of the cubie moves.
For example,

A = (abc,acd,adk,akl,alb)(ac,ad,ak,al,ab).

Proposition 3.2. The megaminx group (G,∗) is non-Abelian.

Proof. As shown in Fig. 3, the move A−1B−1 is not equal to B−1A−1. Therefore G is245

non-Abelian.

We can define a map ϕc : G→ A20 as follows: any move M in G rearranges the
corner cubies, it defines a permutation of the 20 unoriented corner cubies. Further-
more, all the basic moves in Eqn. 1 produce a 5-cycle, therefore all the corner cubie
permutations are even. Hence ϕc(G) ⊆ A20. Similarly, we define ϕe : G→ A30: any250

move M reduces an even permuation of 30 unoriented edge cubies, ϕe(G)⊆ A30.

9



(a). A−1B−1 (b). B−1A−1

Figure 3: The move AB is not equal to BA, the megaminx gorup G is non-Abelian.

3.3. Generators Construction
Lemma 3.3. The action of the megaminx group on unoriented cubies are transitive,
more specifically

1. The group ϕc(G) acts on the set of ordered pairs (C1,C2) of different unoriented255

corner cubies is transitive;
2. The group ϕc(G) acts on the set of ordered triples (C1,C2,C3) of different unori-

ented corner cubies is transitive;
3. The group ϕe(G) acts on the set of ordered pairs (C1,C2) of different unoriented

edge cubies is transitive;260

4. The group ϕe(G) acts on the set of ordered triples (C1,C2,C3) of different unori-
ented edge cubies is transitive.

Proof. The proof is straightforward. We focus on 1 only, the other proofs are simi-
lar. Given an arbitrary ordered unoriented corner cubies (C1,C2), it is necessary and
sufficient to show that they can be transformed to (abc,acd). There are 3 major steps,265

1. move both C1 and C2 to face C,
2. rotate face C to move C1 to the cubicle abc,
3. use E, F and D or their inverses to move C2 to acd.

Lemma 3.4 (Corner 3-cycle). There is a corner 3-cycle move in M ∈G, M =(C1,C2,C3)270

where Ck’s are unoriented corner cubies.

Proof. As shown in Fig. 4, we construct a corner 3-cycle using the commutator trick
as described in Lem 2.1. Let σ = DF−1D−1 and τ = A, then the support of σ and the
support of τ has one corner cubie acd, hence the commutator is the 3-cycle

[σ ,τ] = (abc,ce f ,acd).

10



(a). σ = DF−1D−1 (b). corner 3-cycle

Figure 4: The 3-cycle of unoriented corner cubies.

275

(a). σ = BD−1C2DB−1 (b). edge 3-cycle

Figure 5: The 3-cycle of unoriented edge cubies.

Lemma 3.5 (Edge 3-cycle). There is a edge 3-cycle move in M ∈G, M = (C1,C2,C3)
where Ck’s are unoriented edge cubies.

Proof. As shown in Fig. 5, we construct an edge 3-cycle using the commutator trick as
described in Lem 2.1. Let σ = BD−1C2DB−1 and τ = A, then the support of σ and the
support of τ has one edge cubie ac, hence the commutator is the 3-cycle280

[σ ,τ] = (ac,ab,c f ).

11



(a). σ = DF2EF−1D−1 (b). corner 2-twist

Figure 6: The twists of a pair of oriented corner cubies.

Lemma 3.6 (Corner 2-twist). There is a corner 2-twist move in M ∈ G, M preserves
the positions of both corner and edge unoriented cubies, but twists a pair of corner
cubies (C1,C2), such that the orientation of C1 increases by +1, and the orientation of
C2 decreases by −1.285

Proof. As shown in Fig. 6, we construct a corner twist move using the commutator
trick as described in Lem 2.1. Let σ = DF2EF−1D−1 and τ = A. The support of
ϕc(σ) and the support of ϕc(τ) has no overlap, hence the commutator [σ ,τ] is the
identity on the unoriented corner cubies.

But the commutator twists the orientations of two corner cubies, acd is twisted by290

+1, abc is twisted by −1,

[σ ,τ] = (abc,cab)(acd,cda) (2)

Lemma 3.7 (Edge 2-Flip). There is a edge 2-flip move in M ∈ G, M preserves the
positions of both corner and edge unoriented cubies, but twists a pair of edge cubies
(C1,C2), such that the orientation of C1 increases by +1, and the orientation of C2295

decreases by −1.

Proof. As shown in Fig. 7, we construct an edge flip move using the commutator trick
as described in Lem 2.1. Let σ = σ = BD−1C2E−1F−1C2DB−1 and τ = A. The
support of ϕe(σ) and the support of ϕe(τ) has no overlap, hence the commutator [σ ,τ]
is the identity on the unoriented edge cubies.300

But the commutator flips the orientations of two edge cubies, ab is flipped, ac is
flipped,

[σ ,τ] = (ab,ba)(ac,ca) (3)
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(a). σ = BD−1C2E−1F−1C2DB−1 (b). edge 2-flip

Figure 7: The flips of a pair of oriented edge cubies.

3.4. Solvable Configuration
Definition 3.2 (Solvable Configuration). Suppose (σ ,τ,x,y) is a configuration, if there305

is a move g in G, such that g acts on the solved configuration will result in the (σ ,τ,x,y),
then this configuration is called solvable.

Theorem 3.8 (Solvable Configuration). A (σ ,τ,x,y) is solvable if and only if

1. the parity of σ equals to the parity of σ0;
2. the parity of τ equals to the parity of τ0;310

3. the orientations satisfy

20

∑
i=1

xi ≡ 0 (mod 3),
30

∑
j=1

y j ≡ 0 (mod 2).

Proof. Necessary condition. All the basic moves in Eqn. 1 induce 5-cycles of corner
cubies and edge cubies, which are even permuations. Hence the pairity of σ and τ must
equal to those of σ0 and τ0. This shows the first 2 conditions hold.

By direct verification, under the basic moves, condition 3 holds, namely the total315

orientations of corner cubies is divisible by 3 and the total orientations of edge cubies
is divisible by 2. Because the basic moves are the generators of G, hence condition 3
holdes under the whole group action of G.

Sufficient condition. Suppose a given configuration satisfies the 3 conditions, we320

can construct a sequence moves in G to transform it to the solved configuration, there
are 4 steps

1. Recover the corner cubie positions: σ−1σ0 is an even permutation in A20, which
is generated by 3-cycles. Using conjugation and corner 3-cycle, Lem 3.3 and
Lem 3.4, one can construct a sequence of moves to produce σ−1σ0. Hence,325

transform σ to σ0.
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2. Recover the edge cubie positions: τ−1τ0 is an even permutation in A30, which
is generated by 3-cycles. Using conjugation and edge 3-cycle, Lem 3.3 and
Lem 3.5, one can construct a sequence of moves to produce τ−1τ0. Hence, trans-
form τ to τ0.330

3. Recover the corner cubie orientations: choose the smallest two corner cubies,
whose orientations are both non-zeros, (xi,x j), using conjugate and corner twist-
ing operation in Lem 3.3 and Lem 3.6, to change xi to be 0. Then the number
of non-zero orientation corner cubies is reduced. Repeat this procedure, until all
xi’s are zeros.335

4. Recover the orientation of cubie orientations: choose the smallest two edge cu-
bies, whose orientations are both non-zeros, (yi,y j), using conjugate and edge
flipping operation in Lem 3.3 and Lem 3.9, to change yi to be 0. Then the num-
ber of non-zero orientation edge cubies is reduced. Repeat this procedure, until
all yi’s are zeros.340

Then we reach the solved configuration.

Corollary. Given a solvable configuration, there is a deterministic algorithm to con-
struct a sequence of moves to transform it to the initial configuration.

Proof. The proof for the sufficient condition in theorem 3.8 gives the algorithm.

3.5. Megaminx Group Structure345

Let GO denote the subgroup, each move in GO fix the positions of all corner and
edge cubies, but twist the orientations; GP denote the subgroup, each move in GP fix
the orientations of all corner and edge cubies, but permutes their positions.

Lemma 3.9. Let GO denote the set of moves that fix the positions of all corner and
edge cubies, then GO is a normal subgroup of the megaminx group G, which is called350

the orientation twisting subgroup.

Proof. Construct a homomorphism ϕ : G→ S50, which maps a move in G to a permu-
tation of all unoriented corner and edge cubies. Then it is obvious that GO = ker ϕ ,
hence GO is a subgroup.

Furthermore GO is normal in G. Suppose n ∈ GO and g ∈G, then ϕ(n) = e ∈ S50.355

Consider the conjugate g−1ng,

ϕ(g−1ng) = ϕ(g)−1
ϕ(n)ϕ(g) = ϕ(g)−1eϕ(g) = e ∈ S50,

therefore g−1ng ∈ ker ϕ , namely g−1ng ∈ GO, GO is normal.

Lemma 3.10. The orientation twisting subgroup

GO = Z19
3 ×Z29

2 ,

where Zn
m is the direct product of n copies of Zm.
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Proof. We consider the orientations of 20 corner cubies. Suppose, there is a corner cu-360

bie Ci with non-zero orientation, because the total sum of all corner cubie orientations
is 0, there must be another cornier cubie C j with non-zero orientation. We apply the
corner twist operation in Lem 3.6 and conjugation multiple times, we can change the
orientation of Ci to be 0. Therefore, the total number of corner cubies with non-zero
orientation is reduced. By repeating this procedure, we can change the orientations of365

all corner cubies to be zeros. Because the total orientation is 0, the orientation of the
last corner cubie is determined by the first 19 cubie corners. This shows the corner
orientation twisting subgroup is isomorphic to Z19

3 .
Similarly, the edge orientation flipping subgroup is isomorphic to Z29

2 . Because the
whole group GO is Abelian, both subgroups are normal, and GO is the direct product370

of the two subgroups.

Definition 3.3 (Normal Closure). The normal closure of a subset A of a group G,
NCL(A) is the intersection of all normal subgroups in G that contain A,

NCL(A) =
⋂

A⊆N,NEG

N.

Corollary. The orientation twisting normal subgroup GO is the normal closure of the
set of corner twisting move Eqn. 2 and edge flipping move Eqn. 3375

{[σ1,τ1], [σ2,τ2]}

where

σ1 = DF2EF−1D−1,τ1 = A,σ2 = BD−1C2E−1F−1C2DB−1,τ2 = A.

Proof. Combine Lem 3.6, Lem 3.9 and Lem 3.10.

Lemma 3.11. The position permutation subgroup GP has the direct product structure

GP = A20×A30.

Proof. The permuations of all the unoriented corner cubies are even, represented as
A20; the permuations of all the unoriented edge cubies are even, represented as A30.380

Suppose n permutes the corner cubie positions without changing the orientations,
n ∈ A20, and g ∈GP, then the support of n only contains corner cubies, the intersection
of the support of n and that of g only contains corner cubies. Namely, no edge cubie is
in the intersection, hence all the edge cubies will be fixed by g−1ng. Therefore, g−1ng
only permutes the corner cubies without changing the orienations, g−1ng ∈ A20. This385

means A20 is normal in GP. Similarly A30 is normal, A20∩A30 = e. Furthermore, any
permutation g ∈ GP can be decomposed into cycles, each cycle only contains corner
cubies or edge cubies, hence belongs either to A20 or A30. Hence g = αβ , where
α ∈ A20 and β ∈ A30. By definition of direct product, GP = A20×A30.

Theorem 3.12 (Group Structure). Suppose (G,∗) is the megaminx group, then it has390

the decomposition as the semidirect product:

G= GO oGP = (Z19
3 ×Z29

2 )o (A20×A30). (4)
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Proof. By previous argument, Lem 3.10 shows GO is a normal subgroup; the intersec-
tion between GO and GP is the identity of G. Each move M ∈G can be decomposed in-
to the product of an orientation twising move and a position permutation move, namely395

G= GOGP. Hence the megaminx group is the semidirect product of GO and GP.

Corollary. The size of the megaminx group or the total number of solvable configura-
tions is

|G|= 1
4

319×229×20!×30!

Proof. By direct computation, using the group structure Eqn. 4 and the facts |Z19
3 | =

319, |Z29
2 |= 229, |A20|= 20!/2 and |A30|= 30!/2.400

4. Conclusion

This work proves the structure of the megaminx group, gives the sufficient and nec-
essary conditions for solvable configurations, and introduce a constructive algorithm to
solve megaminx. In the future, the God’s number of megaminx will be explored.
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